Tecnologías de residuos cero para el desarrollo sostenible en las plantas de beneficio de aceite de palma

Autores/as

  • Teow Yeit Haan
  • Mohd Sobri Takriff

Palabras clave:

Biohidrógeno, Energía renovable, Nanocarbono, Biofertilizante orgánico, Secuestro de CO2, Recuperación de agua

Resumen

Una planta de beneficio piloto instalada para el proyecto Tecnología de Residuos Cero UKMYSD en la planta de beneficio de aceite de palma Sime Darby’s Palm Oil Tennamaram, en Bestari Jaya, Selangor, cuenta con varias tecnologías para el desarrollo sostenible. El proyecto transforma una infraestructura ordinaria en una fábrica de tecnología verde. Se identificaron siete áreas de impacto estratégicas para abordar los desafíos de sostenibilidad del procesamiento del aceite de palma, entre los que se encuentran, la descarga de una gran cantidad de efluentes altamente contaminantes, la emisión de gases efecto invernadero (GEI) y la generación de muchos residuos sólidos. Los enfoques adoptados en este programa de investigación generaron energía renovable a partir de los efluentes de las plantas de beneficio de aceite de palma (POME por sus siglas en inglés) y el hidrolizado de racimos de fruta vacíos (RFV) pretratados en la producción de biohidrógeno. El POME del fermentador de 2 etapas de biohidrógeno y biometano se sometió a un tratamiento integrado de aguas residuales con algas y secuestro de CO2 y procesos de tratamiento de filtración de membrana integrados en la recuperación de agua tratada para alimentar las calderas. Por otro lado, los RFV y el POME, junto con los sólidos residuales y la biomasa de algas producida a partir de estas tecnologías de cero residuos, se utilizaron para producir fertilizantes orgánicos. Los resultados de la operación de la planta piloto mostraron que el POME y la biomasa sólida podrían usarse para generar un 20 % adicional de energía renovable en comparación con las tecnologías implementadas en las plantas de beneficio existentes a 1.020 t/d de descarga de POME. Se produjo fertilizante orgánico a menor costo y en menos tiempo, así como se recuperó agua para ser utilizada para alimentar las calderas. La planta
piloto de cero residuos UKM-YSD sirve como tecnología pionera con la posibilidad de cambiar las percepciones, especialmente entre los importadores extranjeros, y mostrar que la producción de aceite de palma puede ser respetuosa con el medio ambiente.

Referencias bibliográficas

MPOC (2020) Nearly 1M work in oil palm industry. Recuperado de http://mpoc.org.my/nearly-1m-work-in-oil-palm-industry/

The Institution of Engineers, Malaysia (IEM) (2019) Zero waste palm oil processing: An industry-university initiative. Jurutera, Agosto 2019, pág. 32.

Sajjad, A-A., Teow, Y.H., Mohammad, A.W. (2018) Sustainable approach of recycling palm oil mill effluent (POME) using integrated biofilm/membrane filtration system for internal plant usage. Jurnal Teknologi 80(4): 165-172.

Ghani, M.S.H. (2019) Pre-treatment, fouling behaviour, and cleaning property of membranes applied for tertiary palm oil mill effluent treatment. Master Degree Dissertation, Universiti Kebangsaan Malaysia. Roundtable on Sustainable Palm Oil (2009) Greenhouse gas emissions from palm oil production: Literature review and proposals from the RSPO working group on greenhouse gases. Final report, págs. 1-48.

Ramírez-Moreno, M.J., Romero-Ibarra, I.C., Landeros, J.O., Pfeiffer, H. (2013) Alkaline and alkaline-earth ceramic oxides for CO2 capture, separation, and subsequent catalytic chemical conversion. CO2 Sequestration and Valorization ed CdRV Morgado and V Paulo 403-442.

Wu, S.Y., Hsiao, I.C., Liu, C.M., Mt Yusuf, N.Y., Wan Ishak, W.N.R., Masdar, M.S. (2017) A novel bio-cellulose membrane and modified adsorption approach in CO2/H2 separation technique for PEM fuel cell applications. International Journal of Hydrogen Energy

(45):27630-27640.

Sidek M.Z., Cheah, Y.J., Zulkefli, N.N., Yusuf, N.Y.M., Isahak W.N.R.W., Sitanggang, R., Masdar, M.S. (2019) Effect of impregnated activated carbon on carbon dioxide adsorption performance for biohydrogen purification. Materials Research Express 6:1-15.

Ru, F.Y., Zulkefli, N.N., Mt Yusuf, N.Y., Masdar, M.S. (2018) Effect of operating parameter on H2/CO2 gas separation using electrochemical cell. International Journal of Applied Engineering Research 13(1): 505-510.

Wang, F., Li, W.Z., Lin, J.D., Chen, Z.Q., Wang, Y. (2018) Crucial support effect on the durability of Pt/MgAl2O4 for partial oxidation of methane to syngas. Applied Catalysis B: Environmental 231:292-298.

Álvarez M.A., Centeno, M.Á., Odriozola, J.A. (2016) Ru-Ni Catalyst in the combined dry-steam reforming of methane: The importance in the metal order addition. Topics in Catalysis 59(2-4): 303-313.

Turchetti, L., Murmura, M.A., Monteleone, G., Lemonidou, A.A., Angeli, S.D., Palma, V., Ruocco, C., Annesini, M.C. (2016) Kinetic assessment of Ni-based catalysts in lowtemperature methane/biogas steam reforming. International Journal of Hydrogen Energy 41(38): 16865-16877.

Pudukudy, M. Yaakob, Z., Takriff, M.S. (2015) Methane decomposition over Pd promoted Ni/MgAl2O4 catalysts for the production of COx free hydrogen and multiwalled carbon nanotubes. Applied Surface Science 356:1320-1326.

Maaroff, R.M., Jahim, J.M., Azahar, A.M., Abdul, P.M., Masdar, M.S., Nordin, D., Abd Nasir, M.A. (2019) Biohydrogen production from palm oil mill effluent (POME) by two stage anaerobic sequencing batch reactor (ASBR) system for better utilization of carbon sources in POME. International Journal of Hydrogen Energy 44: 3395-3406.

Das, D., Veziroglu, T.N. (2008) Advances in biological hydrogen production processes. International Journal of Hydrogen Energy 33: 6046-6057.

Zainal, B.S., Zinatizadeh, A.A., Chyuan, O.H., Mohd, N.S., Ibrahim, S. (2018) Effects of process, operational and environmental variables on biohydrogen production using palm oil mill effluent.

Abdul Rahman, N.F., Harun, S., Sajab, M.S., Zubairi, S.I., Markom, M.M., Jahim, J.M., Mohd Nor, M.T., Abdullah, M.A., Hashim, N. (2018) Boosting enzymatic hydrolysis of pressurized ammonium hydroxide pretreated empty fruit bunch using response surface methodology. Journal of Engineering Science and Technology 13(8): 2421-2445.

Marlowe, A.S. (2014) Enzyme optimization for lignocellulose hydrolysis using mechanistic modelling. Master Thesis. Department of Chemical Engineering, Michigan Technological University, Advances in Civil, Environmental, and Materials Research (ACEM16) 1-15. Michigan, United States of America.

Shamsudin, S., Mohd Shah, U.K., Zainudin, H., Abd-Aziz, S., Mustafa Kamal, S.M., Shirai, Y., Ali Hassan, M. (2011) Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars. Biomass and Bioenergy 36: 280-288.

Cuellar-Franca, R.M., Azapagic, A. (2015) Carbon capture, storage, and utilization technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization 9: 82-102.

Kastanek, F., Sabata, S., Solcova, O., Maleterova, Y., Kastanek, P., Branyikova, I., Kuthan, K., Zachleder, V. (2010) In-field experimental verification of cultivation of microalgae Chlorella sp. using the flue gas from a cogeneration unit as a source of carbon dioxide. Waste Management Resource 28: 961-966.

Hariz, H.B., Takriff, M.S., Ba-Abbad, M.M., Mohd Yasin, N.H., Mohd Hakim, N.I.N. (2018) CO2 fixation capability of Chlorella sp. And its use in treating agricultural wastewater. Journal of Applied Physology 30: 3017-3027.

Hariz, H.B., Takriff, M.S. (2017) Palm oil mill effluent treatment and CO2 sequestration by using microalgae-sustainable strategies for environmental protection. Environmental Science and Pollution Research 24: 20209-20240.

Teow, Y.H., Mohammad, A.W., Wan Mohammad Hamdan, W.N.A., Ghani, M.S.H., Ngteni, R., Mohamed Yusof, K.M. (2016) Pilot-scale integrated pretreatment/membrane filtration system for aerobic palm oil mill effluent (POME) treatment. The 2016 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM16) 1-15.

https://www.lenntech.com/replacement/filmt---ec-bw30-4040.htm

https://www.lenntech.com/products/Filmtec-Membranes/154546/XLE-4040/index.html

https://www.lenntech.com/products/Filmtec-Membranes/149987/NF270-4040/index.html

Teow, Y.H., Ghani, M.S.H., Mohammad, A.W. (2018) Physical and chemical cleaning for nanofiltration/reverse osmosis (NF/RO) membranes in treatment of tertiary palm oil mill effluent (POME) for water reclamation. Jurnal Kejuruteraan SI 1(4): 51-58.

Ghani, M.S.H., Teow, Y.H., Ang, W.L., Mohammad, A.W., Ngteni, R., Mohamed Yusof, K.M. (2017) Fouling assessment of tertiary palm oil mill effluent (POME) membrane treatment for water reclamation. Water Reuse and Desalination 8(3): 412-423.

Ahmad, A.L., Ismail, S., Bhatia, S. (2003) Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157(1-3): 87-95.

Mavrov, V., Belieres, E. (2000) Reduction of water consumption and wastewater quantities in the food industry by water recycling using membrane processes. Desalination 131(1-3):75-86.

Cómo citar

Yeit Haan, T., & Sobri Takriff, M. (2022). Tecnologías de residuos cero para el desarrollo sostenible en las plantas de beneficio de aceite de palma. Palmas, 43(3), 40–55. Recuperado a partir de https://publicaciones.fedepalma.org/index.php/palmas/article/view/13915

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2022-11-29

Número

Sección

Sostenibilidad

Métricas

QR Code

Algunos artículos similares: