Revisión sobre avances tecnológicos recientes en la producción de carbón activado a partir de residuos de la palma de aceite


  • Nor Ardilla Rashidi
  • Suzana Yusuf

Palabras clave:

carbón activado, biomasa, palma de aceite, optimización, aprovechamiento de residuos


El potencial del carbón activado como elemento adsorbente ha sido reconocido en diversas aplicaciones debido a su bajo costo, su estructura porosa bien desarrollada y su elevada capacidad de adsorción. En la actualidad, la abundancia de residuos del cultivo de palma de aceite ha generado ciertos problemas ambientales. En consecuencia, estos desechos agrícolas podrían ser empleados como posibles precursores de bajo costo para la producción de carbón activado. Este artículo de revisión es un examen muy completo de avances recientes (2011-presente) en la utilización de residuos del cultivo de palma de aceite como origen de la producción de carbón activado. A lo largo de la revisión se hace énfasis en la metodología reciente de activación aplicada a los residuos de este cultivo, la cual comprende las siguientes modalidades de calentamiento térmico en horno convencional y de calentamiento por microondas. Así mismo, se hace referencia a los diseños experimentales aplicados a la fabricación de carbones activados a partir de residuos de palma de aceite. En términos generales, este artículo ayuda a los investigadores a avanzar en la búsqueda de una técnica sencilla y económicamente viable para la producción de carbón activado con propiedades fisicoquímicas sobresalientes y una excelente capacidad de adsorción a partir de los residuos provenientes de la palma de aceite


Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Abdul-Khalil, H. P. S., Jawaid, M., Firoozian, P., Rashid, U., Islam, A., & Akil, H. M. (2013). Activated carbon from various agricultural wastes by chemical activation with KOH: preparation and characterization. J. Biobased Mater. Bioenergy, 7, 708-714.

Abdullah, N., & Gerhauser, H. (2008). Bio-oil derived from empty fruit bunches. Fuel, 87, 2606-2613.

Abdullah, N., Sulaiman, F., Gerhauser, H. (2011). Characterisation of oil palm empty fruit bunches for fuel application. J. Phys. Sci., 22, 1-24.

Abdullah, N., & Sulaiman, F. (2013). The properties of the washed empty fruit bunches of oil palm. J. Phys. Sci., 24, 117-137.

Aditiya, H., Chong, W., Mahlia, T., Sebayang, A., Berawi, M., & Nur, H. (2016). Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: a review. Waste Management, 47, 46-61.

Ahmad, A., Buang, A., & Bhat, A. (2016). Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): a review. Renew. Sustain. Energy Rev., 65, 214-234.

Alam, M. Z., Ameem, E. S., Muyibi, S. A., & Kabbashi, N. A. (2009). The factors affecting the performance of activated carbon prepared from oil palm empty fruit bunches for adsorption of phenol. Chem. Eng. J., 155, 191-198.

Al-Dury, S. (2009). Removal of tar in biomass gasification process using carbon materials. Chem. Eng. Trans., 18, 665-670.

Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Foul, A. A. (2013). A review: production of activated carbon from agricultural byproducts via conventional and microwave heating. J. Chem. Technol. Biotechnol., 88, 1183-1190.

Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Foul, A. A. (2014). Comparison of activated carbon prepared from olive stones by microwave and conventional heating for iron (II), lead (II), and copper (II) removal from synthetic wastewater. Environ. Prog. Sustain. Energy, 33, 1074-1085.

Amosa, M. K., Jami, M. S., Alkhatib, M. F. R. D., Jimat, D. N., & Muyibi, S. A. (2014). Comparative and optimization studies of adsorptive strengths of activated carbons produced from steam- and CO2-activation for BPOME treatment. Adv. Environ. Biol, 8, 603-612.

Arami-Niya, A., Wan Daud, W. M. A., Mjalli, F. S. (2010). Production of palm shell-based activated carbon with more homogeniouse pore size distribution. J. Appl. Sci., 10, 3361-3366.

Arami-Niya, A., Daud, W. M. A. W., &. Mjalli, F. S. (2011). Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chem. Eng. Res. Des., 89, 657-664.

Arami-Niya, A., Daud, W. M. A. W., Mjalli, F. S., Abnisa, F., & Shafeeyan, M. S. (2012). Production of microporous palm shell based activated carbon for methane adsorption: modeling and optimization using response surface methodology. Chem. Eng. Res. Des., 90, 776-784.

Aripin, H., Lestari, L., Ismail, D., & Sabchevski, S. (2010). Sago waste based activated carbon film as an electrode material for electric double layer capacitor. Open Mater. Sci. J., 4, 117-124.

Asadullah, M., Rahman, M. A. Motin, M. A., Sultan, M. B. (2007). Adsorption studies on activated carbon derived from steam activation of jute stick char. J. Surf. Sci. Technol., 23, 73-80.

Asghar, A., Abdul-Raman, A. A., & Daud, W. M. A. W. (2014). A comparison of central composite design and Taguchi method for optimizing Fenton process. Sci. World J., 2014, 1-14.

Aslam, M., Shafigh, P., & Jumaat, M. Z. (2016). Oil-palm by-products as lightweight aggregate in concrete mixture: a review. Journal of Cleaner Production, 126, 56-73.

Auta, M. (2012). Fixed bed adsorption studies of Rhodamine B dye using oil palm empty fruits bunch activated carbon. J. Eng. Res. Stud., 3, 3-6.

Awalludin, M. F., Sulaiman, O., Hashim, R., & Nadhari, W. N. A. W. (2015). An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction, Renew. Sustain. Energy Rev., 50, 1469-1484.

Bagheri, N., & Abedi, J. (2009). Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chem. Eng. Res. Des., 87, 1059-1064.

Bamaga, S., Hussin, M. W., & Ismail, W. A. (2013). Palm oil fuel ash: promising supplementary cementing materials. KSCE J. Civ. Eng., 17, 1708-1713.

Bashir, M. J., Ibrahim, N., Ismail, M. N., & Jaya, M. A. T. (2015). Physical treatment technologies for landfill leachate: performance and limitation. In: Aziz, H. A., & Amr, S. A. (Eds.). Control and Treatment of Landfill Leachate for Sanitary Waste Disposalk (PP. 250-285). USA: IGI Global.

Benredouane, S., Berrama, T., & Doufene, N. (2016). Strategy of screening and optimization of process parameters using experimental design: application to amoxicillin elimination by adsorption on activated carbon. Chemom. Intell. Lab. Syst., 155, 128-137.

Bhatnagar, A., Hogland, W., Marques, M., & Sillanpää, M. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J., 219, 499-511.

Cao, Q, Xie, K. C., Lv, Y. K., & Bao, W. R. (2006). Process effects on activated carbon with large specific surface area from corn cob. Bioresour. Technol., 97, 110-115.

Cheah, K. W., & Yusup, S. (2015). Catalytic pyrolysis of oil palm frond (OPF) using graphite nanofiber (GNF) as catalysts. Chem. Eng. Trans., 45, 1543-1548.

Chowdhury, z. z., Hamid, S. B. A., Das, R., Hasan, M. R., Zain, S. M., Khalid, K., Uddin, M. N. (2013). Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources, 8, 6523-6555.

Clean Air Technology Center – CATC (2016). Choosing an Adsorption System for voc: Carbon, Zeolite, or Polymers? North Carolina, USA: EPA-456/F-99-004.

Czitrom, V. (1999). One-factor-at-a-time versus designed experiments. Am. Stat., 53, 126-131.

Dehdashti, A., Khavanin, A., Rezaee, A., & Assilian, H. (2011). Regeneration of granular activated carbon saturated with gaseous toluene by microwave irradiation. Turk. J. Eng. Environ. Sci., 35, 49-58.

Doraiselvana, K., Yusup, S., Wai, C. K., & Muda, N. S. (2015). Optimization studies on catalytic pyrolysis of empty fruit bunch (EFB) using L9 Taguchi orthogonal array. Chem. Eng. Trans., 45, 1639-1644.

Ello, A. S., de Souza, L.K.C., Trokourey, A., & Jaroniec, M. Development of microporous carbons for CO2 capture by KOH activation of African palm shells. J. CO2 Util., 2, 35-38.

Eltom, A. E., Lessa, M. P. F., da Silva, M. J., & da Rocha, J. C. (2012). Production & characterization of activated carbon membranes. J. Mater. Res. Technol., 1, 80-83.

Engel, D. B., Williams, S., & Heinen, A. (2015). Activated carbon impact on MDEA amine solutions. Filtr. Sep., 52, 38-42.

Enochson, L., Brittberg, M., & Lindahl, A. (2012). Optimization of a chondrogenic medium through the use of factorial design of experiments. BioResources, 1, 306-313.

Evbuomwan, B., Agbede, A., & Atuka, M. (2013). A comparative study of the physicochemical properties of activated carbon from oil palm waste (kernel shell and fibre). Int. J. Sci. Eng. Investig., 2, 75-79.

Fałtynowicz, H., Kaczmarczyk, J., Kułazynski, M. (2015) Preparation and characterization of activated carbons from biomass material–giant knotweed (Reynoutria sachalinensis). Open Chem., 13, 1150-1156.

Ferreira, S. C., Bruns, R., Ferreira, H., Matos, G., David, J., Brandao, G., da Silva, ... & Souza, A. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta, 597, 179-186.

Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel. Bioprod. Biorefin., 4, 160-177.

Foo, K. & Hameed, B. (2011a). Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption. Chem. Eng. J., 166, 792-795.

Foo, K. & Hameed, B. (2011b). Preparation of oil palm, (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. Desalination, 275, 302-305.

Foo, K. & Hameed, B. (2012a). Adsorption characteristics of industrial solid waste derived activated carbon prepared by microwave heating for methylene blue. Fuel Process. Technol. 99, 103-109.

Foo, K. & Hameed, B. (2012b). Dynamic adsorption behavior of methylene blue onto oil palm shell granular activated carbon prepared by microwave heating. Chem. Eng. J., 203, 81-87.

Giraldo, L., González-Navarro, M. F., & Moreno-Piraján, J. C. (2013). Activated carbons from African oil palm waste shells and fibre for hydrogen storage. Carbon Sci. Technol., 5, 303-313.

Girgis, B. S., & El-Hendawy, A. N. A. (2002). Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Microporous Mesoporous Mater., 52, 105-117.

González-Navarro, M. F., Giraldo, L., & Moreno-Piraján, J. C. (2014). Preparation and characterization of activated carbon for hydrogen storage from waste African oil-palm by microwave-induced LiOH basic activation. J. Anal. Appl. Pyrolysis, 107, 82-86.

Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., & Nayak, A. (2011). Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res., 45, 4047-4055.

Hamad, B. K. (2015). Preparation and characterization of activated carbon from oil palm shell activated by KOH. J. Pure Appl. Sci., 27, 27-38.

Haro, M., Ruiz, B., Andrade, M., Mestre, A. S., Parra, J. B., Carvalho, A. P., & Ania, C. O. (2012). Dual role of copper on the reactivity of activated carbons from coal and lignocellulosic precursors. Microporous Mesoporous Mater., 154, 68-73.

Hashemipour, H., Baroutian, S., Jamshidi, E., & Abazari, A. (2009). Experimental study and artificial neural networks simulation of activated carbon synthesis in fluidized bed reactor. Int. J. Chem. React. Eng., 7, 1-15.

Herawan, S. G., Hadi, M. S., Ayob, M. R., & Putra, A. (2013). Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature. The Scientific World Journal, 2013, 1-6.

Hernández-Montoya, V., García-Servin, J., & Bueno-López, J. I. (2012). Thermal treatments and activation procedures used in the preparation of activated carbons. In: Hernandez-Montoya, V., &

Bonilla-Petriciolet, A. (Eds.). Lignocellulosic Precursors Used in the Synthesis of Activated Carbon (pp. 19-36). Intech, Croatia.

Hesas, R. H., Arami-Niya, A., Daud, W. M. A. W., & Sahu, J. (2013a). Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation. J. Anal. Appl. Pyrolysis, 104, 176-184.

Hesas, R. H., Daud, W.M.A.W., Sahu, J. N., & Arami-Niya, A. (2013b). The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review. J. Anal. Appl. Pyrolysis, 100, 1-11.

Hesas, R. H., Arami-Niya, A., Daud, W. M. A. W., & Sahu, J. (2013c). Preparation of granular activated carbon from oil palm shell by microwave-induced chemical activation: Optimisation using surface response methodology. Chem. Eng. Res. Des., 91, 2447-2456.

Hesas, R. H., Arami-Niya, A., Daud, W. M. A. W., Sahu, J. N. (2015). Microwave-assisted production of activated carbons from oil palm shell in the presence of CO2 or N2 for CO2 adsorption. J. Ind. Eng. Chem., 24, 196-205.

Hibbert, D. B. (2012). Experimental design in chromatography: a tutorial review. J. Chromatogr. B., 910, 2-13.

Hidayu, A., Mohamad, N., Matali, S., & Sharifah, A. (2013). Characterization of activated carbon prepared from oil palm empty fruit bunch using BET and FT-IR techniques. Proced. Eng., 68, 379-384.

Hui, T. S., & Zaini, M. A. A. (2015). Potassium hydroxide activation of activated carbon: a commentary. Carbon Lett., 16, 275-280.

Hussaro, K. (2014). Preparation of activated carbon from palm oil shell by chemical activation with Na2CO3 and ZnCl2 as imprenated agents for H2S adsorption. Am. J. Environ. Sci., 10, 336-346.

Inamdar, S. A., Surwase, S. N., Jadhav, S. B., Bapat, V. A., & Jadhav, J. P. (2013). Statistically optimized biotransformation protocol for continuous production of L-DOPA using Mucuna monosperma callus culture. SpringerPlus, 2, 1-9.

Islam, M. A., Tan, I., Benhouria, A., Asif, M., & Hameed, B. (2015). Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation. Chem. Eng. J., 270, 187-195.

Isoda, N., Rodrigues, R., Silva, A., Gonzalves, M., Mandelli, D., Figueiredo, F. C. A., & Carvalho, W. A. (2014). Optimization of preparation conditions of activated carbon from agriculture waste utilizing factorial design. Powder Technol., 256, 175-181.

Jain, A., Balasubramanian, R., & Srinivasan, M. P. (2015a). Tuning hydrochar properties for enhanced mesopore development in activated carbon by hydrothermal carbonization. Microporous Mesoporous Mater., 203, 178-185.

Jain, A., Balasubramanian, R., & Srinivasan, M. P. (2015b). Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxidemediated hydrothermal treatment for adsorption applications. Chem. Eng. J., 273, 622-629.

Jamari, S. S., & Howse, J. R. (2012). The effect of the hydrothermal carbonization process on palm oil empty fruit bunch. Biomass Bioenergy, 47, 82-90.

Jones, D., Lelyveld, T., Mavrofidis, S., Kingman, S., Miles, N. (2002). Microwave heating applications in environmental engineering: a review. Resour. Conserv. Recycl., 34, 75-90.

Kadir, S. A. S. A., Matali, M., Mohamad, M. F., Abdul, N. H., Rani. (2014). Preparation of activated carbon from oil palm empty fruit bunch (EFB) by steam activation using response surface methodology. Int. J. Mater. Sci. Appl., 3, 159-163.

Kaithwas, A., Prasad, M., Kulshreshtha, A. & Verma, S. (2012). Industrial wastes derived solid adsorbents for CO2 capture: a mini review. Chem. Eng. Res. Des., 90, 1632-1641.

Kalderis, D., Kotti, M., Méndez, A., & Gascó, G. (2014). Characterization of hydrochars produced by hydrothermal carbonization of rice husk. Solid Earth, 5, 477-483.

Kan, Y., Yue, Q., Gao, B., & Li, Q. (2015). Comparative study of dry-mixing and wet-mixing activated carbons prepared from waste printed circuit boards by NaOH activation. RSC Adv., 5, 105943-105951.

Khare, P., & Kumar, A. (2012). Removal of phenol from aqueous solution using carbonized Terminalia chebula-activated carbon: process parametric optimization using conventional method and Taguchi’s experimental design, adsorption kinetic, equilibrium and thermodynamic study. Appl. Water Sci., 2, 317-326.

Khezami, L., Ould-Dris, A., & Capart, R. (2007). Activated carbon from thermocompressed wood and other lignocellulosic precursors. BioResources, 2, 193-209.

Kim, T., Lee, J., & Lee, K. H. (2014). Microwave heating of carbon-based solid materials. Carbon Lett., 15, 15-24.

Koo, W. K., Gani, N. A., Shamsuddin, M. S., Subki, N. S., &

Sulaiman, M. A. (2015). Comparison of wastewater treatment using activated carbon from bamboo and oil palm: an overview. J. Trop. Resour. Sustain. Sci., 3, 54-60.

Kubota, M., Hata, A., & Matsuda, H. (2009). Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating. Carbon, 47, 2805-2811.

Kundu, A., Gupta, B. S., Hashim, M., Sahu, J., Mujawar, M., & Redzwan, G. (2015). Optimisation of the process variables in production of activated carbon by microwave heating. RSC Adv., 5, 35899-35908.

Kundu, A., Redzwan, G., Sahu, J. N., Mukherjee, S., Gupta, B. S., & Hashim, M. A. (2014). Hexavalent chromium adsorption by a novel activated carbon prepared by microwave activation. BioResources, 9, 1498-1518.

Kurnia, J. C., Jangam, S. V., Akhtar, S., Sasmito, A. P., & Mujumdar, A. S. (2016). Advances in biofuel production from oil palm and palm oil processing wastes: a review. Biofuel Res. J., 3, 332-346.

Lee, T., Zubir, Z. A., Jamil, F. M., Matsumoto, A., & Yeoh, F. Y. (2014). Combustion and pyrolysis of activated carbon fibre from oil palm empty fruit bunch fibre assisted through chemical activation with acid treatment. J. Anal. Appl. Pyrolysis, 110, 408-418.

Li, W., Zhang, L. B., Peng, J. H., Li, N., & Zhu, X. Y. (2008). Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Ind. Crop. Prod., 27, 341-347.

Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M. M., … & Kern, J. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuel, 2, 71-106.

Lillo-Ródenas, M., Cazorla-Amorós, D., & Linares-Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon, 41, 267-275.

Lim, W. C., Srinivasakannan, C., & Balasubramanian, N. (2010). Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J. Anal. Appl. Pyrolysis, 88, 181-186.

Lim, W. C., Srinivasakannan, C., Al-Shoaibi, A. (2015). Cleaner production of porous carbon from palm shells through recovery and reuse of phosphoric acid. Journal of Cleaner Production, 102, 501-511.

Lin, B. J., & Chen, W. H. (2015). Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere with conventional and microwave-assisted heating. Front. Energy Res., 3, 1-9.

Liu, Q. S., Zheng, T., Wang, P., & Guo, L. (2010). Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind. Crop. Prod., 31, 233-238.

Lopez, G., Artetxe, M., Amutio, M., Erkiaga, A., Alvarez, J.,

Barbarias, I., & Olazar, M. (2012). Preparation of adsorbents derived from waste tires. Chem. Eng. Trans., 29, 811-816.

López, L. T., Chejne, F., & Bhatia, S. K. (2015). Effect of activating agents: flue gas and CO2 on the preparation of activated carbon for methane storage. Energy Fuel, 9, 6296-6305.

Loredo-Cancino, M., Soto-Regalado, E., Cerino-Córdova, F. J., García-Reyes, R. B., García-León, A. M., & Garza-González, M. T. (2013). Determining optimal conditions to produce activated carbon from barley husks using single or dual optimization. J. Environ. Manag., 125, 117-125.

Lua, A. C., & Guo, J. (2001). Microporous oil-palm-shell activated carbon prepared by physical activation for gas-phase adsorption. Langmuir, 17, 7112-7117.

Ma’an, F. A., Muyibi, S. A., & Amode, J. O. (2011). Optimization of activated carbon production from empty fruit bunch fibers in one-step steam pyrolysis for cadmium removal from aqueous solution. Environment, 31, 349-357.

Matos, G., Tarley, C., Ferreira, S., & Arruda, M. (2005). Use of experimental design in the optimisation of a solid phase preconcentration system for Cobalt determination by GFAAS. Eclét. Quím., 30, 65-74.

Maneerung, T., Liew, J., Dai, Y., Kawi, S., Chong, C., & Wang, C. H. (2016). Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies. Bioresour. Technol., 200, 350-359.

Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K. C., Yamazaki, D. A., Bandoch, G. F., ... & Almeida, V. C. Removal of tetracycline by NaOH activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem. Eng. J., 260, 291-299.

Menéndez, J., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E., Bermúdez, J. (2010). Microwave heating processes involving carbon materials. Fuel Process. Technol., 91, 1-8.

Menéndez, J., Menéndez, E., Garcia, A., Parra, J., & Pis, J. (1999). Thermal treatment of active carbons: a comparison between microwave and electrical heating. J. Microw. Power Electromagn. Energy, 34, 137-143.

Mishra, D., Bejoy, N., & Sharon, M. (2005). Application of Taguchi methodology for optimization of parameters of CVD influencing formation of a desired optical band gap of carbon film. Carbon Lett., 6, 96-100.

Misnon, I. I., Zain, N. K. M., Aziz, R. A., Vidyadharan, B., & Jose, R. (2015). Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors. Electrochim. Acta, 174, 78-86.

Mohammad, Y., Shaibu-Imodagbe, E., Igboro, S., Giwa, A., &

Okuofu, C. (2014). Modeling and optimization for production of rice husk activated carbon and adsorption of phenol. J. Eng., 2014, 1-10.

Nabais, J. M. V., Laginhas, C., Carrott, M. M. L. R., Carrott, P. J. M., Amorós, J. E. C., Gisbert, A. V. N. (2013). Surface and porous characterisation of activated carbons made from a novel biomass precursor, the esparto grass. Appl. Surf. Sci., 265, 919-924.

Nasri, N. S., Hamza, U. D., Ismail, S. N., Ahmed, M. M., & Mohsin, R. (2014). Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. J. Clean. Prod., 71, 148-157.

Nasri, N. S., Zain, H., Usman, H., Majid, Z. A., Sharer, Z., Sazali, N. A., & Anirman, N. L. (2015). CO2 adsorption-breakthrough study on activated carbon derived from renewable oil palm empty fruit bunch. Aust. J. Basic Appl. Sci., 9, 67-71.

Nizamuddin, S., Jayakumar, N. S., Sahu, J. N., Ganesan, P., Bhutto, A. W., & Mubarak, N. M. (2015). Hydrothermal carbonization of oil palm shell. Korean J. Chem. Eng., 32, 1789-1797.

Nizamuddin, S., Shrestha, S., Athar, S., Ali, B. S., & Siddiqui, M. A. (2016). A critical analysis on palm kernel shell from oil palm industry as a feedstock for solid char production. Rev. Chem. Eng., 32, 489-505.

Nwabanne, J. T., & Igbokwe, P. K. (2012). Adsorption performance of packed bed column for the removal of lead (II) using oil palm fibre. Int. J. Appl. Sci. Technol., 2, 106-115.

Oghbaei, M., & Mirzaee, O. (494). Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloy. Compd., 494, 175-189.

Omri, A., Benzina, M., & Ammar, N. (2013). Preparation, modification and industrial application of activated carbon from almond shell. J. Ind. Eng. Chem., 19, 2092-2099.

Othman, J., & Jafari, Y. (2014). Selected research issues in the Malaysian agricultural sector. J. Ekon. Malays., 48, 127-136.

Parshetti, G. K., Hoekman, S. K., & Balasubramanian, R. (2013). Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour. Technol., 135, 683-689.

Plaza, M. G., González, A. S., Pis, J. J., Rubiera, F., & Pevida, C. (2014). Production of microporous biochars by single-step oxidation: effect of activation conditions on CO2 capture. Appl. Energy, 114, 551-562.

Pietrzak, R., Nowicki, P., Kazmierczak, J., Kuszynska, I., Goscianska, J., & Przepiórski, J. (2014). Comparison of the effects of different chemical activation methods on properties of carbonaceous adsorbents obtained from cherry stones. Chem. Eng. Res. Des., 92, 1187-1191.

Puligundla, P., Oh, S.E., & Mok, C. (2016). Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review. Carbon Lett., 17, 1-10.

Rafsanjani, H. H., Kamandari, H., & Najjarzadeh, H. (2013). Study on pore and surface development of activated carbon produced from Iranian coal in a rotary kiln reactor. Iran. J. Chem. Eng., 10, 27-38.

Rashidi, N. A., Yusup, S., Ahmad, M. M., Mohamed, N. M., & Hameed, B. H. (2012). Activated carbon from the renewable agricultural residues using single step physical activation: a preliminary analysis. APCBEE Proced., 3, 84-92.

Rashidi, N. A., Yusup, S., & Hameed, B. H. (2013). Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon. Energy, 61, 440-446.

Reddy, K. S. K., Al-Shoaibi, A., & Srinivasakannan, C. (2012). Activated carbon from date palm seed: process optimization using response surface methodology. Waste Biomass Valoriz., 3, 149-156.

Reza, M. T., Andert, J., Wirth, B., Busch, D., Pielert, J., Lynam, J. G., & Mumme, J. (2014). Hydrothermal carbonization of biomass for energy and crop production. Appl. Bioenerg., 1, 11-29.

Roman, S., Nabais, J. V., Ledesma, B., González, J., Laginhas, C., & Titirici, M. (2013). Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous Mesoporous Mater, 165, 127-133.

Ruiz, H., Zambtrano, M., Giraldo, L., Sierra, R., & Moreno-Pirajan, J. C. (2015). Production and characterization of activated carbon from oil-palm shell for carboxylic acid adsorption. Orient. J. Chem. 31, 753-762.

Salman, J., Njoku, V., & Hameed, B. (2011). Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon. Chem. Eng. J., 174, 33-40.

Samiran, N. A., Jaafar, M. N. M., Chong, C. T., & Jo-Han, N. (2015) A review of palm oil biomass as a feedstock for syngas fuel technology. J. Technol., 72, 13-18.

Sangchoom, W., & Mokaya, R. (2015). Valorization of lignin waste: Carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage. ACS Sustain. Chem. Eng., 3, 1658-1667.

Saygili, H., & Güzel, F. (2015). High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. Journal of Cleaner Production, 113, 995-1004.

Sekirifa, M. L., Hadj-Mahammed, M., Pallier, S., Baameur, L., Richard, D., Al-Dujaili, A. H. (2013). Preparation and characterization of an activated carbon from a date stones variety by physical activation with carbon dioxide. J. Anal. Appl. Pyrolysis, 99, 155-160.

Sethupathi, S., Bashir, M. J., Akbar, Z. A., & Mohamed, A. R. (2015). Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents. Waste Manag. Res., 33, 303-312.

Sevilla, M., Fuertes, A., & Mokaya, R. (2011). High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ. Sci., 4, 1400-1410.

Sevilla, M., & Fuertes, A. B. (2011). Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci., 4, 1765-1771.

Sevilla, M., Maciá-Agulló, J. A., & Fuertes, A. B. (2011). Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenergy, 35, 3152-3159.

Sing, C. Y., & Aris, M. S. (2013). A study of biomass fuel briquettes from oil palm mill residues. Asian J. Sci. Res., 6, 537-545.

Singh, R., Ibrahim, M. H., Esa, N., & Iliyana, M. (2010). Composting of waste from palm oil mill: a sustainable waste management practice. Rev. Environ. Sci. Biotechnol., 9, 331-344.

Shinoj, s., Visvanathan, R., Panigrahi, S., Kochubabu, M. (2011). Oil palm fiber (OPF) and its composites: a review. Ind. Crop. Prod., 33, 7-22.

Shivayogimath, C., & Inani, S. Treatment of biomethanated distillery spent wash by adsorption process on bagasse activated carbon. Int. J. Appl. Sci. Eng. Res., 3, 1069-1078.

Shoaib, M., & Al-Swaidan, H. M. (2014). Synthesis of activated carbon from Saudi date tree fronds by gaseous mixture (N2 and CO2). J. Chem. Soc. Pak., 36, 771-774.

Shoaib, M., & Al-Swaidan, H. M. (2015a). Impact of reaction vessel pressure on the synthesis of sliced activated carbon from date palm tree fronds. Hem. Ind., 69, 561-565.

Shoaib, M., & Al-Swaidan, H. M. (2015b). Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation. Biomass Bioenergy, 73, 124-134.

Shuit, S. H., Tan, K. T., Lee, K. T., & Kamaruddin, A. (2009). Oil palm biomass as a sustainable energy source: a Malaysian case study. Energy, 34, 1225-1235.

Soleimani, M., & Kaghazchi, T. (2007). Agricultural waste conversion to activated carbon by chemical activation with phosphoric acid. Chem. Eng. Technol., 30, 649-654.

Stassen, H. E. (2015). Current issues in charcoal production and use (pp. 425-472). In: Van Swaaij, W.P.M., Kersten, S.R.A., & Palz, W. (Eds.). Biomass Power for the World. Florida, USA: CRC Press.

Sulaiman, F., & Abdullah, N. (2014). Pyrolytic product of washed and unwashed oil palm wastes by slow thermal conversion process. J. Phys. Sci., 25, 73-84.

Sulaiman, F., Abdullah, N., & Rahman, A. A. (2011). Basic properties of washed and unwashed oil palm wastes: In: Proceedings of the 3rd CUTSE International Conference. Miri Sarawak, 8-9 November, pp. 307-311.

Suresh, S., Srivastava, V., & Mishra, I. (2013). Removal of 4-nitrophenol from binary aqueous solution with aniline by granular activated carbon using Taguchi’s design of experimental methodology. Theor. Found. Chem. Eng., 47, 284-290.

Uemura, Y., Omar, W. N., Tsutsui, T., & Yusup, S. B. (2011). Torrefaction of oil palm wastes. Fuel, 90, 2585-2591.

Wang, J., & Wan, W. (2009). Experimental design methods for fermentative hydrogen production: a review. Int. J. Hydrogen Energy, 34, 235-244.

Wang, L., Guo, Y., Zou, B., Rong, C., Ma, X., Qu, Y., Li, Y., & Wang, Z. (2011). High surface area porous carbons prepared from hydrochars by phosphoric acid activation. Bioresour. Technol., 102, 1947-1950.

Wang, X., Li, D., Li, W., Peng, J., Xia, H., Zhang, L., Guo, S., & Chen, G. (2013). Optimization of mesoporous activated carbon from coconut shells by chemical activation with phosphoric acid. BioResources, 8, 6184-6195.

Wass, J. A. (2010). First steps in experimental design-the screening experiment. J. Valid. Technol., 16, 49-57.

Wirasnita, R., Hadibarata, T., Yusoff, A. R. M., & Yusop, Z. (2014). Removal of Bisphenol A from aqueous solution by activated carbon derived from oil palm empty fruit bunch. Water Air Soil Pollut., 225, 1-12.

Xiao, H., Peng, H., Deng, S., Yang, X., Zhang, Y., & Li, Y. (2012). Preparation of activated carbon from edible fungi residue by microwave assisted K2CO3 activation - application in reactive black 5 adsorption from aqueous solution. Bioresour. Technol., 111, 127-133.

Xiao, Y., Long, C., Zheng, M. T., Dong, H. W., Lei, B. F., Zhang, H. R., Liu, Y. L. (2014). High-capacity porous carbons prepared by KOH activation of activated carbon for supercapacitors. Chin. Chem. Lett., 25, 865-868.

Yacob, A. R., Wahab, N., Suhaimi, N. H., & Mustajab, M. K. A. A. (2013). Microwave induced carbon from waste palm kernel shell activated by phosphoric acid. Int. J. Eng. Technol., 5, 214-217.

Yakout, S., & El-Deen, G. S. (2012). Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry, 9(2), 1155-1162.

Yang, C. S., Jang, Y. S., & Jeong, H. K. (2014). Bamboo-based activated carbon for supercapacitor applications. Curr. Appl. Phys., 14, 1616-1620.

Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H., & Duan, X. (2010). Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour. Technol., 101, 6163-6169.

Yang, S. J., Jung, H., Kim, T., & Park, C. R. (2012). Recent advances in hydrogen storage technologies based on nanoporous carbon materials. Prog. Nat. Sci. Mater. Int., 2, 631-638.

Yuan, M., Kim, Y., & Jia, C. Q. (2012). Feasibility of recycling KOH in chemical activation of oil-sands petroleum coke. Can. J. Chem. Eng., 90, (2012) 1472–1478.

Yuen, F. K., & Hameed, B. (2009). Recent developments in the preparation and regeneration of activated carbons by microwaves. Adv. Colloid Interface Sci., 149, 19-27.

Zaini, M. A. A., & Kamaruddin, M. J. (2013). Critical issues in microwave-assisted activated carbon preparation. J. Anal. Appl. Pyrolysis, 101, 238-241.

Zaini, M. A. A., Meng, T., Kamaruddin, M. J., Setapar, S. H. M., & Yunus, M. A. C. (2014). Microwave-induced zinc chloride activated palm kernel shell for dye removal. Sains Malays., 43, 1421-1428.

Zhang, Z., Qu, Y., Guo, Y., Wang, Z., & Wang, X. (2014). A novel route for preparation of high-performance porous carbons from hydrochars by KOH activation. Colloid. Surf. A Physicochem. Eng. Asp., 447, 183-187.




Cómo citar

Rashidi, N. A., & Yusuf, S. (2017). Revisión sobre avances tecnológicos recientes en la producción de carbón activado a partir de residuos de la palma de aceite. Palmas, 38(2), 86–118. Recuperado a partir de



Valor Agregado