Principales estrategias de formación y mitigación de 3-MCPDE en el procesamiento del aceite de palma

Autores/as

  • Chien Lye Chew
  • Norliza Saparin

Palabras clave:

Aceite de palma, 3-MCPDE, Cloro, Diacilglicerol, Seguridad alimentaria

Resumen

El aceite palma es el aceite vegetal más producido y consumido en todo el mundo. Recien- temente, esta industria ha recibido la atención de las autoridades de seguridad alimentaria debido a la presencia de ésteres de 3-monocloropropano-1,2-diol (3-MCPDE) en el aceite refinado. La Autoridad Europea de Seguridad Alimentaria (EFSA) propuso limitar la presencia de 3-MCPDE en 2,5 ppm en el aceite de palma a partir el año 2021. Varios estudios han demostrado que el 3-MCPDE es un contaminante de proceso, inducido por calor durante la etapa de refinación, en presencia de sus precursores, como el diacilglicerol (DAG) y el cloro en el aceite de palma. Se han realizado trabajos de investigación para mitigar la formación de 3-MCPDE. En este artículo se presenta una visión general de la formación de 3-MCPDE, las iniciativas de mitigación y las prácticas industriales para abordar el problema del 3-MCPDE.

Referencias bibliográficas

1. Departamento de Agricultura de Estados Unidos (USDA). (2021). Oilseeds: World Markets andTrade. Recuperado de https:// https://apps.fas.usda.gov/psdonline/circul ars/oilseeds. pdf (consultado el 25 de marzo de 2021).

2. Sundram, K., Sambanthamurthi, R. & Tan, Y. -A. (2003). Palm fruit chemistry and nutrition. Asia Pacific Journal of Clinical Nutrition, 12, 355-362.

3. Aila, N. & Lida N. (2018) ‘Usage of Palm Oil, Palm Kernel Oil and their Fractions as Confectionery Fats’, Journal of Oil Palm Research. 29(3). pp. 301-310 https://doi.org/10.21894/jopr.2017.2903.0 1

4. Mancini, A. et al. (2015). ‘Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health’, pp. 17339-17361. https://doi.org/10.3390/molecules2009173 39.

5. DeMan, J. (2000). ‘Use of Palm Stearin as a Component of Interesterified Blends’, SCI lecture papers series, pp. 1-2. Recuperado de https://www.soci.org/-/media/Files/Lecture- Series/pb86.ashx?la=en (consultado el 22 de diciembre 2019).

6. Chong, C. L. (2012). Measurement and Maintenance of Palm Oil Quality. En O. -M. Lai, C. -P. Tan, & C. C. Akoh (Eds.), Palm Oil, (pp. 431-470). Urbana: AOCS Press.

7. PORAM. PORAM Standard Specifications for Processed Palm Oil. (2000). Recuperado de http://poram.org.my/p/wp-content/uploads/2013/12/1.-PORAM-Standard-Specification. pdf (consultado el 29 de noviembre de 2019).

8. MPOB, Malaysian Palm Oil Board Licensing and Enforcement Division. (2019). Enforcement of additional licencing conditions imposed on licensees of palm oil mill (mf), palm oil refinery (rf), palm oil products exporter (px) and palm oil products importer (pm) categories: food safety & good quality palm oil. Enforcement Circular (Licensing) MPOB, Pk (EL) MPOB 01/2019, 1-4.

9. EFSA Panel on Contaminants in the Food Chain (CONTAM). (2016). Risks for human health related to the presence of 3‐and 2‐monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. Efsa Journal, 14(5), p.e04426. https://doi. org/10.2903/j.efsa.2016.4426 (consultado el 22 de diciembre de 2019).

10. International Agency for Research on Cancer. (1997). IARC working group on the evaluation of carcinogenic risks to humans: silica, some silicates, coal dust and para-aramid fibrils. Recuperado de http://monographs.iarc.fr/ENG/Monographs/vol68/mono68.pdf. (consultado el 25 de diciembre de 2019).

11. Destaillats, F., Craft, B. D., Dubois, M. & Nagy, K.. (2012). Glycidyl esters in refined palm (Elaeis guineensis) oil and related fractions. Part I: Formation mechanism. Food Chemistry, 131(4), pp.1391-1398. https://doi.org/10.1016/j.foodchem.2011.1 0.006

12. Rahn A. K. K., Yaylayan V. A. (2011). ‘What do we know about the molecular mechanism of 3-MCPD ester formation’, Eur. J. Lipid Sci. Technol., 113, 323-329. https://doi.org/10.1002/
ejlt.20100031

13. Destaillats, F., Craft, B. D., Sandoz, L. & Nagy, K. (2012). Formation mechanisms of monochloropropanediol (MCPD) fatty acid diesters in refined palm (Elaeis guineensis) oil and related fractions. Food Additives & Contaminants: Part A, 29(1), pp.29-37.

14. JECFA. (2002). ‘3-Chloro-1,2-propane- diol. En Safety evaluation of certain food additives and contaminants’, Prepared by the fiftyseventh meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Additives Series 48. Recuperado de http://www.inchem.org/documents/jecfa/jecmono/v48je18.htm (consultado el 25 de diciembre de 2019).

15. European Food Safety Authority (EFSA). (2008). Statement of the Scientific Panel on Contaminants in the Food chain (CONTAM) on a request from the European Commission related to 3-MCPD esters. EFSA Journal, 6, 1048. https://doi.org/10.2903/j.efsa.2008.1048

16. Craft, B. D., Nagy, K., Seefelder, W., Dubois, M. & Destaillats, F. (2012). Glycidyl esters in refined palm (Elaeis guineensis) oil and related fractions. Part II: Practical recommendations for effective mitigation. Food Chemistry, 132, 73-79. https://doi. org/10.1016/j.foodchem.2011.1 0.034

17. Šmidrkal, J., Tesařová, M., Hrádková, I., Berčíková, M., Adamčíková, A. & Filip, V. (2016).
Mechanism of formation of 3- chloropropan-1,2-diol(3-MCPD) esters under conditions of the vegetable oil refining. Food Chemistry, 211, 124-129. https://doi.org/10.2903/j.foodchem.2016.0 5.039

18. Tiong, S. H., Saparin, N., The, H. F., Ng, T. L. M., Md Zain, M. Z. b., Neoh, B. K., Md Noor, A., Tan, C. P., Lai, O. M. & Appleton, D. R. (2018). Natural Organochlorines as Precursors of 3- Monochloropropanediol Esters in Vegetable Oils. Journal of Agricultural and Food Chemistry, 66, 999-1007. https://doi.org/10.1021/acs.jafc.7b04995

19. Weißhaar, R. (2008). 3‐MCPD‐esters in edible fats and oils-a new and worldwide problem. European journal of lipid science and technology, 110(8), 671-672.

20. Hrncirik, K. & van Duijn, G. (2011). An initial study on the formation of 3‐MCPD esters during oil refining. European Journal of Lipid Science and Technology, 113(3), 374-379.

21. Zhang, X., Gao, B., Qin, F., Shi, H., Jiang, Y., Xu, X. & Yu, L. (2013). Free radical mediated formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters. Journal of agricultural and food chemistry, 61(10), 2548-2555.

22. Freudenstein, A., Weking, J. & Matthäus, B. (2013). Influence of precursors on the formation of 3‐MCPD and glycidyl esters in a model oil under simulated deodorisation conditions. European Journal of Lipid Science and Technology, 115(3), 286-294.

. Shimizu, M., Vosmann, K. & Matthäus, B. (2012). Generation of 3‐monochloro‐1, 2‐propanediol and related materials from tri‐, di‐, and monoolein at deodorisation
temperature. European Journal of Lipid Science and Technology, 114(11), 1268-1273.

24. Ermacora, A. & Hrncirik, K. (2014). Influence of oil composition on the formation of fatty acid esters of 2-chloropropane-1, 3-diol (2-MCPD) and 3- chloropropane-1, 2-diol (3- MCPD) under conditions simulating oil refining. Food chemistry, 161, 383-389.

25. Che Man, Y. B., Haryati, T., Ghazali, H. M. & Asbi, B. A. (1999). Composition and thermal profile of crude palm oil and its products. Journal of the American Oil Chemists’ Society,
76(2), 237-242.

26. Nagy, K., Sandoz, L., Craft, B. D. & Destaillats, F. (2011). Mass-defect filtering of isotope signatures to reveal the source of chlorinated palm oil contaminants. Food Additives & Contaminants: Part A, 28(11), 1492-1500.

27. Chew, C. L., S. Hilmi S. M. H., Saparin N., M. Hassan N. S., M. Siran Y., Asis A. J., Chan E. S., Tang S. Y. (2018). Effect of Steriliser Condensate and Empty Fruit Bunch’s Liquor Restreaming on the Physicochemical Properties and Stability of Palm Oil. Monash Science Symposium 2018, Monash University Malaysia, 21-23 November, 2018.

28. MPOB: 4th Asia-Pacific International Food Safety Conference & 7th Asian Conference on Food and Nutrition safety, October 11-13 (2016). Penang, Malaysia.

29. Pudel, F., Benecke, P., Fehling, P., Freudenstein, A., Matthäus, B. & Schwaf, (2011). On the necessity of edible oil refining and possible sources of 3‐MCPD and glycidyl esters. European journal of lipid science and technology, 113(3), 368- 373. https://doi.org/10.1002/ ejlt.201000460

30. Matthäus, B., Pudel, F., Fehling, P., Vosmann, K. & Freudenstein, A. (2011). Strategies for the reduction of 3‐MCPD esters and related compounds in vegetable oils. European journal of lipid science and technology, 113(3), 380-386.

31. Syed Hilmi, S. M. H., Othman, N. H., Saparin, N., Jahaya, S. S., Md Noor, A., Asis, A. J. (2018). Process for producing a refined palm fruit oil having a reduced 3- mcpd
content. WO2019027315. Recuperado de https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019027315 (consultado el 5 de febrero de 2020).

32. Mat Hassan, N. S., Chew, C. L., Mohd Tahir, Z., Md Zain, A. B., Asis, A. J., Mohd Siran, Y., Wok, K., Mohammed Yunus, M. F., Jahaya, S. S., Md Rejab, S. A., Mustaner, M., Syed Hilmi, S. M. H. (2018). An integrated oil extractor apparatus for sterilising, digesting and pressing oil palm loose fruitlets. WO2019216757. Recuperado de https://patentscope.wipo. int/search/en/detail.jsf?docId=WO2019216757 (consultado el 5 de febrero de 2020).

33. Rahmat, N., Syed Mohd Hadi S. H., Norliza, S., Syahril Anuar, M. R., Yosri, M. S., Mohammed Faisal, M. Y.; Ahmadilfitri, M. N. & Ahmad Jaril, A. (2019). Production of High Quality Crude Palm Oil (CPO) and Low 3-MCPD Ester RBD Palm Oil. Palm Oil Engineering Bulletin, No. 131, 24-28.

34. Spaparin N., Krishnan A. & Md Noor A. (2018). Process for producing a refined vege- table oil. WO2018182396A1. Recuperado de https://patents.google.com/patent/WO201
8182396A1/en (consultado el 5 de febrero de 2020).

35. . Chew, C. L., Low, L. E., Chia, W. Y., Chew, K. W., Liew, Z. K., Chan, E. S., Chan, Y. J., Kong, P. S. & Show, P. L. (2021). Prospects of palm fruit extraction technology: Palm oil recovery processes and quality enhancement. Food Reviews International.

36. Ramli, M. R., Siew, W. L., Ibrahim, N. A., Hussein, R., Kuntom, A., Abd. Razak, R. A. & Nesaretnam, K. (2011). Effects of degumming and bleaching on 3‐MCPD esters formation during physical refining. Journal of the American Oil Chemists’ Society, 88(11), 1839-1844. https://doi.org/10.1007/s11746-011-1858- 0.

37. Zulkurnain, M., Lai, O. M., Latip, R. A., Nehdi, I. A., Ling, T. C. & Tan, C. P. (2012). The effects of physical refining on the formation of 3‐monochloropropane‐1, 2‐diol esters
in relation to palm oil minor components. Food Chemistry, 135(2), 799-805. https://doi.org/10.1016/j.foodchem.2012.0 4.144.

38. Zulkurnain, M., Lai, O. M., Tan, S. C., Abdul Latip, R. & Tan, C. P. (2013). Optimisation of palm oil physical refining process for reduction of 3‐monochloropropane‐1,2‐diol (3‐ MCPD) ester formation. Journal of Agricultural and Food Chemistry, 61(13), 3341-3349. https://doi.org/10.1021/jf4009185

Cómo citar

Chew, C. L., & Saparin, N. (2022). Principales estrategias de formación y mitigación de 3-MCPDE en el procesamiento del aceite de palma. Palmas, 43(2), 40–51. Recuperado a partir de https://publicaciones.fedepalma.org/index.php/palmas/article/view/13840

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2022-08-01

Número

Sección

Procesamiento

Métricas

QR Code

Algunos artículos similares: