Subproductos de la cadena productiva de la palma de aceite como fuente potencial de fitoquímicos biológicamente activos

Autores/as

  • Alexis  González Díaz
  • Jesús A. García Núñez

Palabras clave:

Fitoquímicos, Aceites residuales, Vitamina E, Carotenoides, Antioxidantes, Subproductos

Resumen

A lo largo de la cadena productiva de la palma de aceite (CPPA) se generan grandes cantidades de subproductos sólidos y líquidos con cierto contenido de fracciones aceitosas residuales, además de subproductos grasos. Los aceites residuales recuperados de las fibras prensadas y de los efluentes de las plantas de beneficio, al igual que los ácidos grasos destilados de palma y las fracciones aceitosas extraídas de las tierras de blanqueo gastadas que son resultantes de la refinación del aceite de palma crudo, así como, el aceite recuperado de los fondos de las columnas de destilación de biodiésel de palma, contienen cantidades importantes de vitamina E, carotenoides, escualeno y fitoesteroles, compuestos biológicamente activos de valor funcional y nutricional que representan una oportunidad real para la generación de nuevos productos y para la incursión en mercados especializados. Actualmente, existe un número creciente de estudios focalizados en los potenciales usos y en las tecnologías aplicables para la recuperación y refinación de fitoquímicos de palma a partir de subproductos de la CPPA. Este estudio tiene como objetivo proporcionar una visión general de las bonda- des de los principales fitoquímicos recuperables de ciertos subproductos de la CPPA y de las concentraciones de estos mismos compuestos encontrados en distintos trabajos, además de presentar un estimativo general de la cantidad de fitoquímicos que pueden ser recuperados y las tecnologías y metodologías empleadas para tal fin. Este documento pretende proponer a los aceites residuales ricos en fitoquímicos de palma como materias primas disponibles para distintas industrias.

Referencias bibliográficas

Abdelmoez, W., Ashour, E. & Naguib, S. M. (2015). A Review on Green Trend for Oil Extraction Using Subcritical Water Technology and Biodiesel Production. Journal of Oleo Science, 64(5), 467-478. doi: 10.5650/jos.ess14269

Abdul Kapor, N. Z., Maniam, G. P., Rahim, M. H. A. & Yusoff, M. M. (2017). Palm Fatty Acid Distillate as a Potential Source for Biodiesel Production-a Review. Journal of Cleaner Production, 143(December), 1-9. doi: 10.1016/j.jclepro.2016.12.163

Advanced Chemistry Development Inc. (ACD/Labs). (2018). ACD/ChemSketch. Toronto. Recuperado de https://www.acdlabs.com/

Alizadeh, F., Bolhassani, A., Khavari, A., Bathaie, S. Z., Naji, T. & Bidgoli, S. A. (2014). Retinoids and their Biological Effects Against Cancer. International Immunopharmacology, 18(1), 43-49. doi: 10.1016/j.intimp.2013.10.027

Almeida, E. S., Carvalho, A. C. B., Soares, I. O. de S., Valadares, L. F., Mendonça, A. R. V., Silva, I. J. & Monteiro, S. (2019). Elucidating How Two Different Types of Bleaching Earths Widely Used in Vegetable Oils Industry Remove Carotenes from Palm Oil: Equilibrium, Kinetics and Thermodynamic Parameters. Food Research International, 121(January),
785-797. doi: 10.1016/j.foodres.2018.12.061
Alvarenga, G. L., Cuevas, M. S., Capellini, M. C., Crevellin, E. J., de Moraes, L. A. B. & Rodrigues, C. E. da C. (2020). Extraction of Carotenoid-rich Palm Pressed Fiber Oil Using Mixtures of Hydrocarbons and short chain alcohols. Food Research International, 128,
108810. doi: 10.1016/j.foodres.2019.108810

Asemi, Z., Alizadeh, S. A., Ahmad, K., Goli, M. & Esmaillzadeh, A. (2016). Effects of Beta- Carotene Fortified Synbiotic Food on Metabolic Control of Patients with Type 2 Diabetes Mellitus: A Double-Blind Randomized Cross-Over Controlled Clinical Trial. Clinical Nutrition, 35(4), 819-825. doi: 10.1016/j.clnu.2015.07.009

Bacchetti, T., Masciangelo, S., Bicchiega, V., Bertoli, E. & Ferretti, G. (2011). Phytosterols, Phytostanols and their Esters: From Natural to Functional Foods. Mediterranean Journal of Nutrition and Metabolism, 4(3), 165-172. doi: 10.1007/s12349-010-0049-0

Bail, J., Meneses, K. & Demark-Wahnefried, W. (2016). Nutritional Status and Diet in Cancer Prevention. Seminars in Oncology Nursing, 32(3), 206-214. doi: 10.1016/j.soncn.2016.05.004

Balić, & Mokos. (2019). Do We Utilize Our Knowledge of the Skin Protective Effects of Carotenoids Enough? Antioxidants, 8(8), 259. doi: 10.3390/antiox8080259

Bartella, L., Di Donna, L., Napoli, A., Sindona, G. & Mazzotti, F. (2019). High-throughput Determination of Vitamin E in Extra Virgin Olive Oil by Paper Spray Tandem Mass Spectrometry. Analytical and Bioanalytical Chemistry. doi: 10.1007/s00216-019-01727-z

Batory, M., Namieciński, P. & Rotsztejn, H. (2019). Evaluation of Structural Damage and Ph of Nail Plates of Hands After Applying Different Methods of Decorating. International Journal of Dermatology, 58(3), 311-318. doi: 10.1111/ijd.14198

Baumgartner, S., Mensink, R. P., Smet, E. De, Konings, M., Fuentes, S., de Vos, W. M. & Plat, J. (2017). Effects of Plant Stanol Ester Consumption on Fasting Plasma Oxy(Phyto) Sterol Concentrations as Related to Fecal Microbiota Characteristics. Journal of Steroid Biochemistry and Molecular Biology, 169, 46-53. doi: 10.1016/j.jsbmb.2016.02.029

Bennett, L. L., Rojas, S. & Seefeldt, T. (2012). Role of Antioxidants in the Prevention of Cancer. Journal of Experimental and Clinical Medicine, 4(4), 215-222. doi: 10.1016/j.jecm.2012.06.001

Beshara, A. & Cheeseman, C. R. (2014). Reuse of Spent Bleaching Earth by Polymerisation of Residual Organics. Waste Management, 34(10), 1770-1774. doi: 10.1016/j.wasman.2014.04.021

Birhanu, G., Javar, H. A., Seyedjafari, E. & Zandi-Karimi, A. (2017). Nanotechnology for Delivery of Gemcitabine to Treat Pancreatic Cancer. Biomedicine and Pharmacotherapy, 88, 635-643. doi: 10.1016/j.biopha.2017.01.071

Bohn, T., Desmarchelier, C., El, S. N., Keijer, J., Van Schothorst, E., Rühl, R. & Borel, P. (2019). β-Carotene in the Human Body: Metabolic Bioactivation Pathways-From Digestion to Tissue Distribution and Excretion. Proceedings of the Nutrition Society, 78(1), 68-87. doi: 10.1017/S0029665118002641

Buddhan, S., Sivakumar, R., Dhandapani, N., Ganesan, B. & Anandan, R. (2007). Protective Effect of Dietary Squalene Supplementation on Mitochondrial Function in Liver of Aged Rats. Prostaglandins Leukotrienes and Essential Fatty Acids, 76(6), 349-355. doi: 10.1016/j. plefa.2007.05.001

Butt, H., Mehmood, A., Ali, M., Tasneem, S., Anjum, M. S., Tarar, M. N., … Riazuddin, S. (2017). Protective Role of Vitamin E Preconditioning of Human Dermal Fibroblasts Against Thermal Stress In Vitro. Life Sciences, 184, 1-9. doi: 10.1016/j.lfs.2017.07.002

Chang, A. S., Sherazi, S. T. H., Kandhro, A. A., Mahesar, S. A., Chang, F., Shah, S. N., … Panhwar, T. (2016). Characterization of Palm Fatty Acid Distillate of Different Oil Processing Industries of Pakistan. Journal of Oleo Science, 65(11), 897-901. doi: 10.5650/jos.ess16073

Chang, Z. Q., Gebru, E., Lee, S. P., Rhee, M. H., Kim, J. C., Cheng, H. & Park, S. C. (2011). In Vitro Antioxidant and Anti-Inflammatory Activities of Protocatechualdehyde Isolated From Phellinus gilvus. Journal of Nutritional Science and Vitaminology, 57(1), 118-122. doi: 10.3177/jnsv.57.118

Chaves, G., Ligarreto-Moreno, G. A. & Cayon-Salinas, D. G. (2018). Physicochemical Characterization of Bunches from American Oil Palm (Elaeis oleifera H. B. K. Cortés) and their hybrids with African oil palm (Elaeis guineensis Jacq.). Acta Agronómica, 67(1), 168-176. doi: 10.15446/acag.v67n1.62028

Cheah, K. Y., Toh, T. S. & Koh, P. M. (2010). Palm Fatty Acid Distillate Biodiesel: Next- Generation Palm Biodiesel. INFORM-International News on Fats, Oils and Related Materials, 21(5), 264-266.

Choi, J., Jiang, X., Jeong, J. B. & Lee, S. H. (2014). Anticancer Activity of Protocatechualdehyde in Human Breast Cancer Cells. Journal of Medicinal Food, 17(8), 842-848. doi: 10.1089/ jmf.2013.0159

Chu, B. S., Baharin, B. S., Che Man, Y. B. & Quek, S. Y. (2004). Separation of Vitamin E from Palm Fatty Acid Distillate Using Silica. III. Batch Desorption Study. Journal of Food Engineering, 64(1), 1-7. doi: 10.1016/S0260-8774(03)00198-5

Chua, C. S. L., Baharin, B. S., Man, Y. B. C. & Tan, C. P. (2007). Separation of Squalene from Palm Fatty Acid Distillate Using Adsorption Chromatography. European Journal of Lipid Science and Technology, 109(11), 1083-1087. doi: 10.1002/ejlt.200700312

Cirmena, G., Franceschelli, P., Isnaldi, E., Ferrando, L., De Mariano, M., Ballestrero, A. & Zoppoli, G. (2018). Squalene Epoxidase as a Promising Metabolic Target in Cancer Treatment. Cancer Letters, 425, 13-20. doi: 10.1016/j.canlet.2018.03.034

Cláudio, A. F. M., Ferreira, A. M., Freire, C. S. R., Silvestre, A. J. D., Freire, M. G. & Coutinho, J. A. P. (2012). Optimization of the Gallic Acid Extraction Using Ionic-Liquid-Based Aqueous Two-Phase Systems. Separation and Purification Technology, 97, 142-149. doi: 10.1016/j.seppur.2012.02.036

Condron, K. N., Waddell, J. N., Claeys, M. C., Lemenager, R. P. & Schoonmaker, J. P. (2017).

Effect of Supplemental Β-Carotene Compared to Retinyl Palmitate on Fatty Acid Profile and Expression of mRNA from Genes Involved in Vitamin a Metabolism in Beef Feedlot Cattle. Animal Science Journal, 88(9), 1380-1387. doi: 10.1111/asj.12794

D’Archivio, M., Scazzocchio, B., Giovannini, C. & Masella, R. (2014). Chapter 15 - Role of Protocatechuic Acid in Obesity-Related Pathologies. En Watson, R. R., Preedy, V. R. & Zibadi, S. (Eds.). Polyphenols in Human Health and Disease pp. 177-189. San Diego: Academic Press. doi: 10.1016/B978-0-12-398456-2.00015-3

Dal Prá, V., Lunelli, F. C., Vendruscolo, R. G., Martins, R., Wagner, R., Lazzaretti, A. P., … da Rosa, M. B. (2017). Ultrasound-Assisted Extraction of Bioactive Compounds from Palm Pressed Fiber with High Antioxidant and Photoprotective Activities. Ultrasonics Sonochemistry, 36, 362-366. doi: 10.1016/j.ultsonch.2016.12.021

Dal Prá, V., Soares, J. F., Monego, D. L., Vendruscolo, R. G., Freire, D. M. G., Alexandri, M., … Da Rosa, M. B. (2016). Extraction of Bioactive Compounds from Palm (Elaeis guineensis) Pressed Fiber Using Different Compressed Fluids. Journal of Supercritical Fluids, 112, 51-56. doi: 10.1016/j.supflu.2016.02.011

Darvin, M. E., Fluhr, J. W., Meinke, M. C., Zastrow, L., Sterry, W. & Lademann, J. (2011). Topical Beta-Carotene Protects Against Infra-Red-Light-Induced Free Radicals. Experimental Dermatology, 20(2), 125-129. doi: 10.1111/j.1600-0625.2010.01191.x

Dini, I. & Laneri, S. (2019). Nutricosmetics: A Brief Overview. Phytotherapy Research, 1-10. doi: 10.1002/ptr.6494

Dutta, A. & Dutta, S. K. (2003). Vitamin E and its Role in the Prevention of Atherosclerosis and Carcinogenesis: A Review. Journal of the American College of Nutrition, 22(4), 258-268. doi: 10.1080/07315724.2003.10719302

Estiasih, T., Ahmadi, K., Widyaningsih, T. D., Maligan, J. M., Mubarok, A. Z., Zubaidah, E., … Puspitasari, R. (2013). Bioactive Compounds of Palm Fatty Acid Distillate (PFAD) from Several Palm Oil Refineries. Advance Journal of Food Science and Technology, 5(9), 1153-1159. doi: 10.19026/ajfst.5.3074

Fattah, R. A., Mostafa, N. A., Mahmoud, M. S., & Abdelmoez, W. (2014). Recovery of Oil and Free Fatty Acids from Spent Bleaching Earth Using Sub-Critical Water Technology Supported with Kinetic and Thermodynamic Study. Advances in Bioscience and Biotechnology, 05(03), 261-272. doi: 10.4236/abb.2014.53033

Fedepalma. (2020). Anuario estadístico 2020. Principales cifras de la agroindustria de la palma de aceite en Colombia y en el mundo, 238. Recuperado de https://publicaciones.fedepalma. org/index.php/anuario/article/view/13235/13024

Fiedor, J. & Burda, K. (2014). Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients, 6(2), 466-488. doi: 10.3390/nu6020466

Gaforio, J. J., Sánchez-Quesada, C., López-Biedma, A., Ramírez-Tortose, M. del C. & Warleta, F. (2014). Molecular Aspects of Squalene and Implications for Olive Oil and the Mediterranean Diet. The Mediterranean Diet: An Evidence-Based Approach, 281-290. doi: 10.1016/B978-0-12-407849-9.00026-9

García-Núñez, J. A., Ramírez-Contreras, N. E., Rodríguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C. & García-Perez, M. (2016). Evolution of Palm Oil Mills into Bio-Refineries:

Literature Review on Current and Potential Uses of Residual Biomass and Effluents. Resources, Conservation and Recycling, 110, 99-114. doi: 10.1016/j.resconrec.2016.03.022

García-Núñez, J. A., Rodríguez, D. T., Fontanilla, C. A., Ramírez-Contreras, N. E., Silva Lora, E. E., Frear, C. S., … García-Perez, M. (2016). Evaluation of Alternatives for the Evolution of Palm Oil Mills into Biorefineries. Biomass and Bioenergy, 95, 310-329. doi: 10.1016/j. biombioe.2016.05.020

Godswill, N.-N., Benoit Constant, L.-L.-N., Joseph Martin, B., Kingsley, T.-M., Jean Albert, D.-M., Simo Thierry, K., … Emmanuel, Y. (2016). Effects of Dietary Fatty Acids on Human Health: Focus on Palm oil from Elaeis guineensis Jacq. and Useful Recommendations. Food and Public Health, 6(3), 75-85. doi: 10.5923/j.fph.20160603.03

González-Díaz, A., Pataquiva-Mateus, A. & García-Núñez, J. A. (2021a). Characterization and Response Surface Optimization Driven Ultrasonic Nanoemulsification of Oil With High Phytonutrient Concentration Recovered from Palm Oil Biodiesel Distillation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612 (December 2020). doi: 1016/j. colsurfa.2020.125961

González-Díaz, A., Pataquiva-Mateus, A. & García-Núñez, J. A. (2021b). Recovery of Palm Phytonutrients as a Potential Market for the By-Products Generated by Palm Oil Mills and Refineries-A Review. Food Bioscience, 41(February), 100916. doi: 10.1016/j. fbio.2021.100916

Goon, J. A., Nor Azman, N. H. E., Abdul Ghani, S. M., Hamid, Z. & Wan Ngah, W. Z. (2017). Comparing Palm Oil Tocotrienol Rich Fraction with Α-Tocopherol Supplementation on Oxidative Stress in Healthy Older Adults. Clinical Nutrition ESPEN, 21, 1-12. doi: 10.1016/j.clnesp.2017.07.004

Gorini, I., Iorio, S., Ciliberti, R., Licata, M. & Armocida, G. (2019). Olive Oil in Pharmacological and Cosmetic Traditions. Journal of Cosmetic Dermatology, (November 2018), 1-5. doi: 10.1111/jocd.12838

Guan, S., Zhang, X.-L., Ge, D., Liu, T.-Q., Ma, X.-H. & Cui, Z.-F. (2011). Protocatechuic Acid Promotes the Neuronal Differentiation and Facilitates Survival of Phenotypes Differentiated from Cultured Neural Stem and Progenitor Cells. European Journal of Pharmacology, 670(2), 471-478. doi: 10.1016/j.ejphar.2011.09.020

Gul, K., Tak, A., Singh, A. K., Singh, P., Yousuf, B. & Wani, A. A. (2015). Chemistry, Encapsulation, and Health Benefits of Β-Carotene-A Review. Cogent Food & Agriculture, 1(1), 1-12. doi: 10.1080/23311932.2015.1018696

Han, N. M. & Choo, M. Y. (2015). Enhancing the Separation and Purification Efficiency of Palm Oil Carotenes Using Supercritical Fluid Chromatography. Journal of Oil Palm Research, 27(4), 387-392.

Han, N. M., May, C. Y., Ngan, M. A., Hock, C. C. & Ali Hashim, M. (2006a). Separation of Coenzyme Q10 in Palm Oil by Supercritical Fluid Chromatography. American Journal of Applied Sciences, 3(7), 1929-1932. doi: 10.3844/ajassp.2006.1929.1932

Hanel, A. & Carlberg, C. (2020). Vitamin D and Evolution: Pharmacologic Implications.
Biochemical Pharmacology, 173. doi: 10.1016/j.bcp.2019.07.024

Herrero, M., Mendiola, J. A., Cifuentes, A. & Ibáñez, E. (2010). Supercritical Fluid Extraction: Recent Advances and Applications. Journal of Chromatography A, 1217(16), 2495-2511. doi: 10.1016/j.chroma.2009.12.019

Hosseini, S., Janaun, J. & Choong, T. S. Y. (2015). Feasibility of Honeycomb Monolith Supported Sugar Catalyst to Produce Biodiesel from Palm Fatty Acid Distillate (PFAD). Process Safety and Environmental Protection, 98, 285-295. doi: 10.1016/j.psep.2015.08.011

Huang, Y. P. & Chang, J. I. (2010). Biodiesel Production from Residual Oils Recovered from Spent Bleaching Earth. Renewable Energy, 35(1), 269-274. doi: 10.1016/j.renene.2009.07.014

Hudiyono, S. & Septian, A. (2012). Optimization Carotenoids Isolation of the Waste Crude Palm Oil Using α-Amylase, β-Amylase, and Cellulase. IOSR Journal of Applied Chemistry, 2(2), 07-12. doi: 10.9790/5736-0220712

Johnston, T. P., Korolenko, T. A., Pirro, M. & Sahebkar, A. (2017). Preventing Cardiovascular Heart Disease: Promising Nutraceutical and Non-Nutraceutical Treatments for Cholesterol Management. Pharmacological Research, 120, 219-225. doi: 10.1016/j.phrs.2017.04.008

Karmowski, J., Hintze, V., Kschonsek, J., Killenberg, M. & Böhm, V. (2015). Antioxidant Activities of Tocopherols/tocotrienols and Lipophilic Antioxidant Capacity of Wheat, Vegetable Oils, Milk and Milk Cream by Using Photochemiluminescence. Food Chemistry, 175, 593-600. doi: 10.1016/j.foodchem.2014.12.010

Kaur, R. & Myrie, S. B. (2020). Association of Dietary Phytosterols with Cardiovascular Disease Biomarkers in Humans. Lipids, 55(6), 569-584. doi: 10.1002/lipd.12262

Kheang, L. S., Foon, C. S., May, C. Y. & Ngan, M. A. (2006). A Study of Residual Oils Recovered from Spent Bleaching Earth : Their Characteristics and Applications Loh Soh Kheang , Cheng Sit Foon , Choo Yuen May and Ma Ah Ngan. American Journal of Applied Sciences, 3(10), 2063-2067. doi: 10.3844/ajassp.2006.2063.2067

Kim, J. H., Kim, C. N. & Kang, D. W. (2019). Squalene Epoxidase Correlates E-Cadherin Expression and Overall Survival in Colorectal Cancer Patients: The Impact on Prognosis and Correlation to Clinicopathologic Features. Journal of Clinical Medicine, 8(5), 632. doi: 10.3390/jcm8050632

Kotelevets, L., Chastre, E., Caron, J., Mougin, J., Bastian, G., Pineau, A., … Couvreur, P. (2017). A Squalene-Based Nanomedicine for Oral Treatment of Colon Cancer. Cancer Research, 77(11), 2964-2975. doi: 10.1158/0008-5472.CAN-16-1741

Koushki, M., Nahidi, M. & Cheraghali, F. (2015). Physico-Chemical Properties, Fatty Acid Profile and Nutrition in Palm Oil Mohammadreza. Journal of Paramedical Sciences (JPS), 6(3), 117-134. doi: 10.22037/jps.v6i3.9772

Liochev, S. I. (2013). Reactive Oxygen Species and the Free Radical Theory of Aging. Free Radical Biology and Medicine, 60, 1-4. doi: 10.1016/j.freeradbiomed.2013.02.011

Mondul, A. M., Sampson, J. N., Moore, S. C., Weinstein, S. J., Evans, A. M., Karoly, E. D., … Albanes, D. (2013). Metabolomic Profile of Response to Supplementation with Β-Carotene in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. American Journal of Clinical Nutrition, 98(2), 488-493. doi: 10.3945/ajcn.113.062778

Musa, I., Khaza’ai, H., Abdul Mutalib, M. S., Yusuf, F., Sanusi, J. & Chang, S. K. (2017). Effects of Oil Palm Tocotrienol Rich Fraction on the Viability and Morphology of Astrocytes Injured with Glutamate. Food Bioscience, 20, 168-177. doi: 10.1016/j.fbio.2017.10.005

NarayanBhilwade,H.,Tatewaki,N.,Nishida,H.&Konishi,T.(2010).SqualeneasNovelFoodFactor. Current Pharmaceutical Biotechnology, 11(8), 875-880. doi: 10.2174/138920110793262088

Nimse, S. B. & Pal, D. (2015). Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC Advances, 5(35), 27986-28006. doi: 10.1039/c4ra13315c

Nuno M. F. S. A., Cerquera, E. F., Oliveira, D. S., Gesto, D. S.-M., Cátia Moreira, H. N., Moorthy, M. J. R. & Fernandes, P. A. (2016). Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry, 55(39), 5483-5506. doi: 10.1021/acs.biochem.6b00342

Nur Sulihatimarsyila, A. W., Lau, H. L. N., Nabilah, K. M. & Nur Azreena, I. (2019). Refining Process for Production of Refined Palm-Pressed Fibre Oil. Industrial Crops and Products,
129(November 2018), 488-494. doi: 10.1016/j.indcrop.2018.12.034

Ofori-Boateng, C. & Lee, K. T. (2013). Sustainable Utilization of Oil Palm Wastes for Bioactive Phytochemicals for the Benefit of the Oil Palm and Nutraceutical Industries. Phytochemistry Reviews, 12(1), 173-190. doi: 10.1007/s11101-013-9270-z

Ou, S. & Kwok, K. C. (2004). Ferulic Acid: Pharmaceutical Functions, Preparation and Applications in Foods. Journal of the Science of Food and Agriculture, 84(11), 1261-1269. doi: 10.1002/jsfa.1873

Parreiras, P. M., Vieira Nogueira, J. A., Rodrigues da Cunha, L., Passos, M. C., Gomes, N. R., Breguez, G. S., … Menezes, C. C. (2020). Effect of Thermosonication on Microorganisms, the Antioxidant Activity and the Retinol Level of Human Milk. Food Control, 113, 107172. doi: 10.1016/j.foodcont.2020.107172

Peh, H. Y., Tan, W. S. D., Liao, W. & Wong, W. S. F. (2016). Vitamin E Therapy Beyond Cancer: Tocopherol Versus Tocotrienol. Pharmacology and Therapeutics, 162, 152-169. doi: 10.1016/j.pharmthera.2015.12.003 Associate Editor: Y. Zhang

Pham, D. M., Boussouira, B., Moyal, D. & Nguyen, Q. L. (2015). Oxidization of Squalene, a Human Skin Lipid: A New and Reliable Marker of Environmental Pollution Studies. International Journal of Cosmetic Science, 37(4), 357-365. doi: 10.1111/ics.12208

Plat, J., Baumgartner, S. & Mensink, R. P. (2015). Mechanisms Underlying the Health Benefits of Plant Sterol and Stanol Ester Consumption. Journal of AOAC International, 98(3), 697-700. doi: 10.5740/jaoacint.SGEPlat

Pleanjai, S. & Gheewala, S. H. (2009). Full Chain Energy Analysis of Biodiesel Production from Palm Oil in Thailand. Applied Energy, 86(SUPPL. 1), S209-S214. doi: 10.1016/j. apenergy.2009.05.013

Posada, L. R., Shi, J., Kakuda, Y. & Xue, S. J. (2007). Extraction of Tocotrienols from Palm Fatty Acid Distillates Using Molecular Distillation. Separation and Purification Technology, 57(2), 220-229. doi: 10.1016/j.seppur.2007.04.016

Prabhu, A. V., Luu, W., Sharpe, L. J. & Brown, A. J. (2016). Cholesterol-Mediated Degradation Of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis. JournalofBiologicalChemistry, 291(16), 8363-8376. doi: 10.1074/jbc.M115.699546

Putra, N. R., Wibobo, A. G., Machmudah, S. & Winardi, S. (2019). Recovery Of Valuable Compounds From Palm-Pressed Fiber by Using Supercritical CO2 Assisted by Ethanol: Modeling and Optimization. Separation Science and Technology, 00(00), 1-14. doi: 10.1080/01496395.2019.1672740

Ramírez, N., Arévalo S, Á. & García, J. A. (2015). Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Palmas, 36(4), 41-54.

Randjelović, P., Veljković, S., Stojiljković, N., Sokolović, D., Ilić, I., Laketić, D., … Randjelović, N. (2015). The Beneficial Biological Properties of Salicylic Acid. Acta Facultatis Medicae Naissensis, 32(4), 259-265. doi: 10.1515/afmnai-2015-0026

Ras, R. T., Koppenol, W. P., Garczarek, U., Otten-Hofman, A., Fuchs, D., Wagner, F. & Trautwein, E. A. (2016). Increases in Plasma Plant Sterols Stabilize within Four Weeks of Plant Sterol Intake and are Independent of Cholesterol Metabolism. Nutrition, Metabolism and Cardiovascular Diseases, 26(4), 302-309. doi: 10.1016/j.numecd.2015.11.007

Ribeiro, D., Freitas, M., Silva, A. M. S., Carvalho, F. & Fernandes, E. (2018). Antioxidant and Pro-Oxidant Activities of Carotenoids and their Oxidation Products. Food and Chemical Toxicology, 120, 681-699. doi: 10.1016/j.fct.2018.07.060

Ricaurte, L., Perea-Flores, M. D. J., Martínez, A. & Quintanilla-Carvajal, M. X. (2016). Production of High-Oleic Palm Oil Nanoemulsions by High-Shear Homogenization (Microfluidization). Innovative Food Science and Emerging Technologies, 35(March), 75-85. doi: 10.1016/j.ifset.2016.04.004

Rodríguez, J. C., Gómez, D., Pacetti, D., Núnnez, O., Gagliardi, R., Frega, N. G., … Lucci, P. (2016). Effects of the Fruit Ripening Stage on Antioxidant Capacity, Total Phenolics, and Polyphenolic Composition of Crude Palm Oil from Interspecific Hybrid Elaeis oleifera × Elaeis guineensis. Journal of Agricultural and Food Chemistry, 64(4), 852-859. doi: 10.1021/ acs.jafc.5b04990

Ronco, A. L. & De Stéfani, E. (2013). Squalene: A Multi-Task Link in the Crossroads of Cancer and Aging. Functional Foods in Health and Disease, 3(12), 462. doi: 10.31989/ffhd.v3i12.30

Sampaio, K. A., Ayala, J. V., Van Hoed, V., Monteiro, S., Ceriani, R., Verhé, R. & Meirelles, A. J. A. (2017). Impact of Crude Oil Quality on the Refining Conditions and Composition of Nutraceuticals in Refined Palm Oil. Journal of Food Science, 82(8), 1842-1850. doi: 10.1111/1750-3841.13805

Sangar, S. K., Lan, C. S., Razali, S. M., Farabi, M. S. A. & Taufiq-Yap, Y. H. (2019). Methyl Ester Production from Palm Fatty Acid Distillate (PFAD) Using Sulfonated Cow Dung-Derived Carbon-Based Solid Acid Catalyst. Energy Conversion and Management, 196, 1306-1315. doi: 10.1016/j.enconman.2019.06.073

Sangkharak, K., Pichid, N., Yunu, T. & Kingman, P. (2016). Separation of Carotenes and Vitamin E from Palm Oil Mill Effluent Using Silica From Agricultural Waste as an Adsorbent. Walailak Journal of Science and Technology, 13(11), 939-947. doi:10.14456/ vol13iss12pp%p

Silva, L., Bermúdez, A., Mojica, P., Cuellar, S. & Medina, C. (2017). Fitonutrientes derivados de la palma africana, sacha inchi y macadamia. Bogotá. Recuperado de http://www.sic.gov. co/boletines-tecnologicos/fitonutrientes-derivados-de-la-palma-africana-sacha-inchi-y- macadamia

Šošić-Jurjević, B., Lütjohann, D., Jarić, I., Miler, M., Vojnović Milutinović, D., Filipović, B., … Milošević, V. (2017). Effects of Age and Soybean Isoflavones on Hepatic Cholesterol Metabolism and Thyroid Hormone Availability in Acyclic Female Rats. Experimental Gerontology, 92(October), 74-81. doi: 10.1016/j.exger.2017.03.016

Stahl, W., & Sies, H. (2012). β-Carotene and other carotenoids in protection from sunlight. American Journal of Clinical Nutrition, 96(5), 1179-1184. https://doi.org/10.3945/
ajcn.112.034819

Sumi, E. S., Anandan, R., Rajesh, R., Ravishankar, C. N. & Mathew, S. (2018). Nutraceutical and Therapeutic Applications of Squalene. Fishery Technology, 55, 229-237.

Tai, A., Sawano, T. & Ito, H. (2012). Antioxidative Properties of Vanillic Acid Esters in Multiple Antioxidant Assays. Bioscience, Biotechnology and Biochemistry, 76(2), 314-318. doi: 10.1271/bbb.110700

Tan, Y. A., Muhammad, H., Hashim, Z., Subramaniam, V., Wei, P. C., Let, C. C., … May, C. Y. (2010). Life Cycle Assessment of Refined Palm Oil Production and Fractionation (part 4 ). Journal of Oil Palm Research, 22(December), 913-926.

Tanaka, T., Tanaka, T. & Tanaka, M. (2011). Potential Cancer Chemopreventive Activity of Protocatechuic Acid. Journal of Experimental & Clinical Medicine, 3(1), 27-33. doi: 10.1016/j.jecm.2010.12.005

Tay, B., Ping, Y. & Yusof, M. (2009). Characteristics and Properties of Fatty Acid Distillates from Palm Oil. Oil Palm Bulletin, 59(November), 5-11.

Teixeira, C. B., Macedo, G. A., Macedo, J. A., da Silva, L. H. M. & Rodrigues, A. M. da C. (2013). Simultaneous Extraction of Oil and Antioxidant Compounds from Oil Palm Fruit (Elaeis guineensis) by an Aqueous Enzymatic Process. Bioresource Technology, 129, 575-581. doi: 10.1016/j.biortech.2012.11.057

Teo, K. T., Hassan, A. & Gan, S. N. (2018). UV-Curable Urethane Acrylate Resin from Palm Fatty Acid Distillate. Polymers, 10(12), 1-16. doi: 10.3390/polym10121374

Tozer, S., O’Mahony, C., Hannah, J., O’Brien, J., Kelly, S., Kosemund-Meynen, K. & Alexander- White, C. (2019). Aggregate Exposure Modelling of Vitamin A from Cosmetic Products, Diet and Food Supplements. Food and Chemical Toxicology, 131(January), 110549. doi: 10.1016/j.fct.2019.05.057

Uddin, M. S., Sarker, M. Z. I., Ferdosh, S., Akanda, M. J. H., Easmin, M. S., Bt Shamsudin, S. H. & Yunus, K. Bin. (2015). Phytosterols and their Extraction from Various Plant Matrices Using Supercritical Carbon Dioxide: A Review. Journal of the Science of Food and Agriculture, 95(7), 1385-1394. doi: 10.1002/jsfa.6833

USDA-FAS. (2020). Palm Oil Global Production. Recuperado de https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=4243000#

Vázquez-Vidal, I. & Jones, P. J. H. (2020). Nutrigenetics and Blood Cholesterol Levels in Response to Plant Sterols. En Principles of Nutrigenetics and Nutrigenomics (Vol. 2, pp. 227-230). Elsevier Inc. doi: 10.1016/b978-0-12-804572-5.00029-x

Wei, G., Guan, Y., Yin, Y., Duan, J., Zhou, D., Zhu, Y., … Wen, A. (2013). Anti-inflammatory Effect of Protocatechuic Aldehyde on Myocardial Ischemia/Reperfusion Injury In Vivo and In Vitro. Inflammation, 36(3), 592-602. doi: 10.1007/s10753-012-9581-z

Weingärtner, O., Bogeski, I., Kummerow, C., Schirmer, S. H., Husche, C., Vanmierlo, T., … Laufs, U. (2017). Plant Sterol Ester Diet Supplementation Increases Serum Plant Sterols and Markers of Cholesterol Synthesis, but Has No Effect on Total Cholesterol Levels. Journal of Steroid Biochemistry and Molecular Biology, 169(July 2016), 219-225. doi: 10.1016/j. jsbmb.2016.07.016

Wu,L.,Guo,X.,Wang,W.,Medeiros,D.M.,Clarke,S.L.,Lucas,E.A.,…Lin,D.(2016).Molecular Aspects Of Β, Β-Carotene-9′, 10′-Oxygenase 2 in Carotenoid Metabolism and Diseases. Experimental Biology and Medicine, 241(17), 1879-1887. doi: 10.1177/1535370216657900

Wu,T.Y.,Mohammad,A.W.,Jahim,J.M.&Anuar,N.(2009). AHolisticApproachtoManaging Palm Oil Mill Effluent (POME): Biotechnological Advances in the Sustainable Reuse of POME. Biotechnology Advances, 27(1), 40-52. doi: 10.1016/j.biotechadv.2008.08.005

Yin, M. & Chao, C. (2008). Anti-Campylobacter, Anti-Aerobic, and Anti-Oxidative Effects of Roselle Calyx Extract and Protocatechuic Acid in Ground Beef. International Journal of Food Microbiology, 127(1), 73-77. doi: 10.1016/j.ijfoodmicro.2008.06.002

Zerbinati, C. & Iuliano, L. (2017). Cholesterol and Related Sterols Autoxidation. Free Radical Biology and Medicine, 111, 151-155. https://doi.org/10.1016/j.freeradbiomed.2017.04.013

Zouboulis, C. C., Ganceviciene, R., Liakou, A. I., Theodoridis, A., Elewa, R. & Makrantonaki, E. (2019). Aesthetic Aspects of Skin Aging, Prevention, and Local Treatment. Clinics in Dermatology, 37(4), 365-372. doi: 10.1016/j.clindermatol.2019.04.002

Cómo citar

González Díaz , A., & García Núñez, J. A. (2021). Subproductos de la cadena productiva de la palma de aceite como fuente potencial de fitoquímicos biológicamente activos. Palmas, 42(3), 62–82. Recuperado a partir de https://publicaciones.fedepalma.org/index.php/palmas/article/view/13582

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

2021-11-26

Número

Sección

Valor Agregado

Métricas

QR Code