Desarrollos técnicos en la palma de aceite elementos claves para la competitividad

Oil palm technical developments - key elements for competitiveness

N. Rajanaidu; B. S. Jalani; D. Ariffin 1

RESUMEN

Malasia, primer productor de palma de aceite en el mundo, tiene una estructura organizacional de entidades de apoyo al desarrollo del cultivo de la palma de aceite que permiten avanzar en todos los campos de investigación y desarrollar el gran potencial de la industria de la palma de aceite. Se presentan los desarrollos técnicos en áreas como fitomejoramiento y genética, biotecnología, agronomía, protección del cultivo, mecanización de plantaciones, usos del aceite de palma, salud y nutrición, oleoquímicos, entre muchos otros. Con las estrategias y desarrollos de investigación del MOPB, el aceite de palma se proyecta como el aceite vegetal dominante del nuevo siglo.

SUMMARY

Malaysia, the first oil palm producer in the world, has an organizational structure of support entities for the development of oil palm cultivation, which allows advancing the oil palm industry's great potential in all the fields of research and development. The technical developments in areas such as breeding and genetics, biotechnology, agronomy, crop protection, mechanization of plantations, uses of the palm oil, health and nutrition, oleo chemicals, are presented, among others. With MOPB's research strategies and developments, palm oil is projected as the dominating vegetable oil of the new century.

Palabras claves: Palma de aceite, Aceite de palma, Investigacion y Desarrollo, Oleoquimicos, Competitividad.

1 Malaysian Palm Oil Board (MPOB).

INTRODUCCIÓN

Malasia es uno de los principales productores de aceite de palma en el mundo. Está situada al sudeste de Asia, justo al lado opuesto de Latinoamérica en el globo terráqueo. Tiene extensión de alrededor de 330.000 km y una población de 22,6 millones de habitantes, con un ingreso per cápita de >US\$3.000 (Tabla 1).

Tabla Malasia: Estadísticas bas

1998°	1999'
329.733	329.733
22,2	22,6
11.831	11.831
3.018	3.113
	22,2 11.831

- (c) calculado
- (p) pronósticos

La primera plantación de palma de aceite en Malasia fue establecida en 1917. La producción de aceite de palma fue bastante lenta en las décadas de 1950 y 1960. El crecimiento fue moderado debido a la diversificación del cultivo de caucho al de palma de aceite. La independencia de los bri-

tánicos en 1957 condujo al cultivo acelerado de palma de aceite. El Gobierno malasio estableció la Federal Land Development Authority (FELDA), cuyo propósito era elevar el bienestar de los miembros menos privilegiados de la sociedad malasia.

El resultado de tal iniciativa permite a la FELDA manejar una área total de 674.948 hectáreas de palma de aceite para 1999, lo cual equivale al 20,3% (Tabla 2) del total del área sembrada con palma de aceite de 3.313.393 hectáreas en Malasia (Tabla 3). Las agencias gubernamentales FELDA, FELCRA, RISDA y los programas estatales controlan 1.135.376 hectáreas, lo cual representa cerca del 32,73% del total del área cultivada con palma de aceite. Los pequeños cultivadores independientes forman el 8,65% del total del área sembrada, o sea 286.513 hectáreas.

Para dar a basto con el rápido aumento en el área sembrada con palma de aceite, hay 334 plantas extractoras en operación. Tienen capacidad de procesar 61 millones de toneladas de RFF por año (Tabla 4). Algunas de las plantas extractoras utilizan las prensas de tornillo más modernas, donde todas las superficies expuestas son hechas en acero inoxidable. Los tanques, la tubería, los secadores al vacío han sido instalados utilizando acero inoxidable para asegurar la producción de aceite de palma crudo con un contenido de hierro que no supere 1 ppm.

Inicialmente, Malasia exportaba el aceite de palma en forma cruda. Por medio de varios incentivos, Malasia fortaleció la industria de la

Tabla 2. Distribución del área sembrada con palma de aceite, por categoría: 1998 y 1999 (Hectáreas)

	19	98	1999		
Categoría	hectáreas	- 5	hectáreas	%	
Plantaciones privadas	1.751.371	56,90	1.942.452	58,62	
Planes gubernamentales:					
FELDA	672.142	21,84	674.948	20,37	
FELCRA	130.651	4,24	132.354	4,00	
RISDA	37.862	1,23	41.561	1,25	
Planes estatales	221.729	1,20	235.565	7,11	
Pequeños cultivadores	264.361	8,59	286.513	8,65	
Total	3.078.116	100,00	3.313.393	100,00	

Tabla 3. Área sembrada con palma de aceite: 1975-1999 (hectárea:

Año	Malasia Penin.	Sabah	Sarawak	Total
1975	568.561	59.139	14.091	641.791
1985	1.292.399	161.500	28.500	1.482.399
1995	1.903.171	518.133	118.783	2.540.087
1999	2.051.595	941.322	320.476	3.313.393

Tabla 4. Numero de plantas extractaras y capacidad: 1999 (t de FF / Año).

	Piantas Extractoras Existentes en Operación			
Estados	Número	Capacidad		
Malasia Penin.	243	43.602.320		
Sabah/Sarawak	91	18.009.000		
Malasia	334	61.611.320		

refinación. Actualmente hay 46 refinerías con una capacidad de procesamiento de 14,1 millones de toneladas por año (Tabla 5).

La formación de la industria malasia de refinación de aceite de palma promovió la necesidad de crear amplios establecimientos para el acopio a granel en las plantas extractoras de aceite, las refinerías, así como instalaciones de acopio en el puerto de exportación. La capacidad de acopio es alrededor del 50% de la capacidad de producción del área de la palma de aceite. Esto es para asegurar de que no haya ventas forzosas en tiempos de bajos precios. Con esta estrategia fue posible obtener mejores ganancias.

Los productos acabados y el valor agregado al aceite de palma refinado se llevó a cabo para desarrollar la industria oleoquimica. Existen 14 plantas oleoquímicas en Malasia, con una capacidad de operación de 1,5 millones de toneladas (Tabla 6). La producción mundial de oleoquímicos se enumera en la Tabla 7. Esto muestra que los países de la cuenca del Pacífico. especialmente Malasia, Indonesia y Filipinas jugarán un papel importante en la producción de oleoguímicos.

ESTABLECIMIENTO DEL MALAYSIAN PALM OIL BOARD (MPOB)

Al principio, el Departamento de Agricultura de Malasia fue responsable de la investigación en palma de aceite. En 1971, el Malaysian Agriculture Research and Development Institute (MARDI) se creó para realizar investigación en todos los cultivos menos en caucho. Con el rápido desarrollo de la industria de la palma de aceite en Malasia, el Gobierno formó el Palm Oil Research Institute of Malaysia (PORIM) en

1979 para realizar la investigación y el Tabla 7. Producción mundial de oleoquímicos ('000 de toneladas). desarrollo de la palma de aceite y sus productos. En gran parte, el PORIM es provisto de fondos por la industria, mediante impuestos para la investigación. Su misión es apoyar el bienestar de la industria del aceite de palma en Malasia por medio de la investigación, el desarrollo y los servicios. En mayo de 2000, el Malay-

Tabla 5. Número de refinerías y capacidades: 1999 (t/año).

	En operación		
Estados	Número	Capacidad	
Johore	16	6.161.400	
Penang	2	499.000	
Perak	5	943.500	
Selangor	11	2.946.000	
Otros Estados	3	624.000	
Malasia Penin.	37	11.173.900	
Sabah/Sarawak	9	2.966.000	
Malasia	46	14.139.900	

sian Palm Oil Board, recientemente establecido, ha asumido las funciones del PORIM y PORLA (Palm Oil Registration and Licensing Authority).

Los siguientes son los principales objetivos del MPOB:

- Ampliar y mejorar los usos actuales que se dan a los productos de aceite de palma;
- Encontrar nuevos usos:
- Mejorar la eficacia en la producción y los productos de calidad;
- Promover el uso, consumo y posibilidad de mercadeo de los productos de aceite de palma;
- Registrar y suministrar licencias a la industria de palma de aceite.

Tabla 6. Número de plantas oleoquímicas y capacidad: 1999 (t/año)

	En operación		
Estados	Número	Capacidad	
Johore	4	282.350	
Penang	3	519.925	
Selangor	5	318.982	
Otros Estados	2	375.410	
Malasia Penin.	14	1.496.667	

No. of Lines	CHE OF ISH		ÃO	
Región	1985	1990	1995	2000(e)
Europa Occidental	1.615	1.748	1.578	1.658
América	1.380	1.438	1.358	1.348
Cuenca del Pacífico	1.020	1.065	1.983	2.633
Otros	25	273	410	540
Total en el mundo	4.040	4.524	5.239	6.179

El MPOB está encabezado por el Director-General, quien es asistido por dos Directores-Generales Diputados y Directores de Divisiones. El MPOB tiene siete Divisiones que son: Investigación Biológica, Ingeniería y Procesamiento, Servicios de Desarrollo de Producto y Asesoría Técnica, Administración. Finanzas y Desarrollo, Economía y Desarrollo de la Industria, Obtención de Licencias y Ejecución y Tecnología de Información y Servicios Corporativos.

El MPOB está encabezado por Tabla 8. Producción mundial de 17 aceites y grasas: 1995-1999 ('000 de toneladas).

Aceites y Grasas	1995	1996	1997	1998	1999
Aceite de Palma	15.447	16.643	17.861	16.711	20.277
Aceite de Palmiste	1.948	2.060	2.223	2.163	2.518
Aceite de Soya	20.426	20.324	21.034	24.006	24.755
Aceite de Girasol	8.572	9.032	9.206	8.546	9.237
Aceite de Colza	10.952	11.486	11.841	12.220	12.936
Aceites Vegetales	74.505	76.715	80.361	81.815	86.995
Aceites/Grasas Animales	20.234	20.433	20.433	20.799	21.762
Gran Total	94.739	97.089	100.794	102.614	108.757

EL POTENCIAL ECONÓMICO DE LA INDUSTRIA DE LA PALMA DE ACEITE EN MALASIA

En 1999, la producción mundial de aceites y grasas alcanzó 109 millones de toneladas y la producción de aceite de palma y aceite de palmiste fue de 22,7 millones de toneladas, o sea, 20,8% de la producción mundial (Tabla 8). Malasia e Indonesia produjeron 10,5 y 6,0 millones de toneladas de aceite de palma, respectivamente (Tabla 9). En 1999, las exportaciones mundiales de aceites y grasas ascendieron a 33,8 millones de toneladas y el aceite de palma y el aceite de palmiste contribuyeron con 14,7 millones de toneladas, o sea el 43,4% del mercado (Tabla 10). Malasia sola exportó 7,6 millones de toneladas en 1999, o sea, el 22.5% del comercio mundial (Tabla 11).

En 1999, Malasia produjo 10,5 millones de toneladas de aceite de palma crudo, 1,3 millones de toneladas de aceite de palmiste crudo y 1.6

millones de toneladas de torta de palmiste (Tabla 12). Al mismo tiempo, Malasia exportó 8,9 millones de toneladas de aceite de palma y 0,5 millones de toneladas de aceite de palmiste y 1,2 millones de toneladas de torta de palmiste (Tabla 13).

La Tabla 14 muestra la lista

de varios de los productos de aceite de palma que son exportados y su volumen y valor ascienden a 8.9 millones de toneladas y RM 14,4 mil millones (US\$ 3,8 mil millones). En el caso de los productos de palmiste, las exportaciones tuvieron un valor de RM 1,5 mil millones (US\$395 millones) (Tabla 15). En el caso de productos de torta de palmiste, el valor de las exportaciones

Tabla 9. Principales productores mundiales de aceite de palma: 1999 ('000 de toneladas).

País	1999
Malasia	10.554
Indonesia	6.060
Nigeria	720
Colombia	424
Costa de Marfil	282
Tailandia	410
Papua Nueva Guinea	270
Ecuador	220
Costa Rica	105
Honduras	75
Brasil	90
Venezuela	46
Guatemala	53
Otros*	968
Total	20.277

Tabla 10. Exportaciones mundiales de 17 aceites y grasas: 1995-1999 ('000 de toneladas)

Aceites y Grasas	1995	1998	1997	1998	1999
Aceite de Palma	10.173	10.715	12.117	10.812	13.527
Aceite de Palmiste	793	930	1.048	1.007	1.213
Aceite de Soya	5.691	4.951	6.773	7.986	7.545
Aceite de Girasol	2.962	2.651	3.380	2.781	2.981
Aceite de Colza	1.898	1.780	1.907	2.222	1.682
Aceites Vegetales	25.254	24.206	29.214	28.815	30.069
Aceites/Grasas Animales	4.201	3.614	3.508	3.503	3.775
Gran Total	29.455	27.820	32.722	32.318	33.844

Tabla 11. Principales exportadores mundiales de aceite de palma: 1995-1999.

País	1995	1996	1997	1998	1999
Malasia	6.513	7.212	7.490	7.424	7.600
Indonesia	1.856	1.851	2.982	2.252	3.000
Papua Nueva Guinea	220	267	275	235	250
Costa de Marfil	120	99	73	83	80
Colombia	21	29	61	72	CO-CONTRACTOR
Singapur*	399	289	298	241	240
Hong Kong*	275	305	173	103	130
Otros*	773	686	766	573	
Total	10.177	10.738	12.118	10.983	10.983

Nota * incluye países que reexportan

Tabla 12. Producción anual de productos de palma de aceite: 1975-1999 (toneladas).

Año	Aceite de palma crudo	Palmiste	Aceite de paimiste crudo	Torta de palmiste
1975	1.257.573	232.821	108.260	n.d.
1985	4.134.463	1.211.887	511.908	633.316
1995 1999	7.810.546 10.553.918	2.395.588 3.025.690	1.036.538 1.338.905	1.293.144 1.624.134

Tabla 13. Exportaciones anuales de productos de palmiste 1975-1999 (toneladas).

Año	Aceile de palmiste	Torta de palmiste
1975	109.153	n.d.
1985	437.115	683.683
1995	391.258	910.036
1999	549.893	1.245.493

Tabla 14. Volumen de exportaciones y valor de los productos de palma de aceite: 1999.

Producto	Volumen (toneladas)	Valor (Millones de RM)
Aceite de palma crudo		
Oleina de palma cruda Aceite de palma RBD		
Estearina de palma RBD		
Oleína de palma		
Aceite ácido de palma Destilado de ácido graso		
de palma		
Fracción media de palma		
Aceite de cocina/ oleina doble		
TOTAL	549.893	14.418,1
		(US\$ 3,7 miles de
		millones)

ascendió a RM 230,7 millones, o US\$60,7 millones (Tabla 16).

El valor de exportaciones de productos acabados del aceite de palma, tales como vanaspati, margarina, manteca para pastelería, jabón y sustituto de la manteca de cacao ascendió a RM 226,5 millones, ó US\$59,6 millones (Tabla 17).

El valor de exportaciones de oleoquimicos en bruto está jugando un papel cada vez mayor en Malasia. Las exportaciones de oleoquimicos, tales como alcohol graso, jabón y glicerina alcanzaron

Tabla 15. Volumen de exportaciones y valor de los productos de aceite de palmiste: 1999

Producto	Volumen (toneladas)	Valor (Millones de RM)
Aceite de Palmiste Crudo Aceite de Palmiste RBD Oleína de Palmiste NB Estearina de Palmiste NB Destilado de Ácido Graso	e han leb j so estoliba ornasert e	
de Palma Total	549.893	1.494,1 US\$393 m

Tabla 16. Volumen de exportaciones y valor de los productos de torta de palmiste. 1999.

Tabla 17. Volumen de exportaciones y valor de los productos terminados del aceite de palma: 1999

Productos terminados	Volumen (toneladas)	Valor (millones de RM)	
Ghee/Vanaspati vegetales	49.381	92,3	
Margarina	3.305	9,4	
Manteca para pastelería	44.719	83,2	
Sustituto de manteca de cacao	6.348	21,1	
Jabón	999	2,1	
Grasas para masas	1.668	3,6	
Aceite "Prayers"	656	1,4	
Oleína roja	740	2,6	
Otros	5.626	10,8	
Total	113.443	226,5	
		US\$60 m	

RM 2,8 mil millones o US\$745 millones (Tabla 18). Estas cifras y valores de exportaciones muestran la naturaleza dinámica de la industria de la palma de aceite y su contribución a la economía nacional.

DESARROLLOS TÉCNICOS

Fitomejoramiento y Genética

A lo largo de los últimos veinte años, el MPOB reunió la colección más grande del mundo de germoplasma de palma de aceite. Se hicieron colecciones de *E. guineensis* Jacq. en Nigeria, Camerún, Zaire, Tanzania, Sierra Leona, Guinea, Ghana, Senegal, Gambia y Angola. Adicionalmente, los fitomejoradores tienen acceso a materiales avanzados de fitomejoramiento, tales como Deli *dura*, AVROS, URT, La Mé, NIFOR (WT), Ekona, Calabar, etc. Se ha recogido germoplasma de *E. oleífera* (H.B.K.) Cortez en Honduras, Costa Rica, Panamá, Colombia, Surinam y Brasil.

Al sudeste de Asia, los híbridos y los retrocruzamientos son de interés debido a su enanismo y a la calidad del aceite. Actualmente se están utilizando técnicas citogenéticas moleculares para seleccionar individuos elites para la clonación.

El MPOB ha reunido varias especies económicas de palmas, tales como algunos de los géneros Jessenia, Oenocarpus, Bactris, Euterpe y Babassu. Bactris gasipaes Kunt, conocida como chontaduro o pejibaye, se cultiva para fruta y palmito o corazón de la palma y se está promoviendo como un cultivo de plantación potencial para el futuro.

Utilizando el material de germoplasma nigeriano del MPOB se han producido semillas híbridas DxP para enanismo, con alto índice de yodo, alto palmiste, alto caroteno, alto índice de cosecha, etc. y están siendo probados extensivamente por los fitomejoradores de la industria. El MPOB pudo desarrollar varios materiales de siembra, tales como PSI (enanismo), PS2 (alto índice de yodo) y PS3 (alto palmiste), utilizando el germoplasma exótico de palma de aceite. Palmas *E. oleífera* de alto rendimiento han sido seleccionadas por su alto caroteno, para propósitos farmacéuticos.

Biotecnología y cultivo de tejidos

El MPOB se ha embarcado en un programa importante de ingeniería genética para alterar la composición de ácidos grasos del aceite de palma. El propósito es reducir el ácido palmítico (C16:0), del 44 al 10-15% y correspondientemente aumentar el ácido oleico, del 40 al 70-80%. Se han identificado dos enzimas claves como responsables de producir altos niveles de ácido palmítico en la palma de aceite (Sambanthamurthi et al. 1999).

Tabla 18. Volumen de exportaciones y valor de productos oleoquimicos: 1999.

Productos oleoquímicos	Volumen (tonelades)	Valor (en miliones de RM)
Ácido caprílico/Cáprico	9.392	46,1
Ácido Mirístico	18.644	65,3
Ácido Láurico	47.289	149,4
Ácido Palmítico	51.143	94,8
Ácido Esteárico	194.277	383,6
Ácido oleico	13.584	42,5
Ácido graso sin destilar	71.709	164,4
Ácido graso destilado	34.147	76,7
Otro ácido graso	34.436	97,4
Alcohol graso	220.410	861,1
Metiléster	134.272	364,1
Glicerina	118.670	358,1
Viruta de jabón	64.146	124,6
Viruta de jabón / Mezcla / Base	1.713	4,5
Otros	180	0,4
Total	1.010.992	2.833,0
		US\$746 m

Estas son:

- Una palmitoyl-ACP tioesterasa muy activa;
- Una 3-cetoacilo1 ACP Sintasa II que limita las tasas.

Los genes para controlar la producción de estas dos enzimas están siendo aislados para trasnferir el ADN, utilizando la pistola de partículas.

Adicionalmente, genes para plásticos biodegradables, resistencia fungal (Ganoderma), ácidos oleico y esteárico altos se están considerando para la transformación de la palma de aceite.

Hay varias técnicas moleculares disponibles, tales como RFLP, RAPD, AFLP y microsatélites para estudiar el genoma de la palma de aceite. Los métodos están siendo utilizados para estudiar la diversidad genética de las colecciones de germoplasma *E. guineensis, E. oleífera* y materiales avanzados de fitomejoramiento. Se ha utilizado la tecnología del "fingerprinting" genético para estudiar la estabilidad de cultivos de tejidos de palma de aceite, la identificación de clones y para verificar la pureza de los cruzamientos.

Los mapas del genoma de la palma de aceite acelerará el fitomejoramiento convencional. Quizás sea posible seleccionar familias destacadas en la etapa de vivero. Se están desarrollando mapas de ligación de la palma de aceite para una autofamilia *tenera* (T128) y un cruzamiento híbrido interespecífico.

La biología molecular en la palma de aceite se aplica para comprender el desarrollo de la planta. Los genes asociados con el desarrollo de la flor son sumamente útiles para comprender el problema de anormalidad en clones de palma de aceite. La tasa de éxito en la embriogénesis es más bien baja en el proceso de cultivo de tejidos. Se están estudiando y haciendo mapas con los genes involucrados en la expresión de la embriogénesis.

El sistema de tejidos es una herramienta útil para propagar palmas élites vegetativamente. Es posible clonar palmas *tenera, dura* y *pisífera* e híbridos sobresalientes de los retrocruzamientos. Los clones *dura* y *pisífera* son útiles para la

producción de semillas biclonales híbridas DxP. Para minimizar el problema de la anormalidad, es posible producir semillas DxP semiclonales. Los clones dura son cruzados con pisífera normales, que son conocidas por su habilidad combinatoria. La propagación vegetativa de la palma de aceite mediante el proceso de cultivo de tejidos es lenta y requiere mucha mano de obra. El método de cultivo suspendido ofrece una oportunidad para propagar palmas elites económica y rápidamente.

Agronomía

El MPOB desarrolló el Sistema de Nutrición Eficaz de la Palma de Aceite (OPENS), el cual está basado en una combinación de explotación máxima del potencial de rendimiento del lugar (MESYP) y la respuesta potencial del rendimiento a los fertilizantes. El sistema de recomendación de fertilizantes (FRS) utiliza el potencial de rendimiento del lugar, el balance óptimo de nutriente de las hojas y los factores restrictivos observados del lugar específico.

Estudios sobre la nutrición con oligoelementos de la palma de aceite en suelos de turba sugirieron dosis efectivas y métodos de aplicar los nutrientes. La aplicación, especialmente de Cu y Zn se debe realizar lo más pronto posible después de la siembra en el campo. Pruebas en suelos de turba mostraron que después de 10 años de cosecha, de 120 a 160 palmas/hectárea producían rendimientos superiores a 160 a 200 palmas/hectárea. Pruebas de preparación de suelo indicaron que hay un aumento del 16,4% en el rendimiento si se compacta la turba antes de la siembra en el campo.

Recientemente se estableció el Laboratorio del Sistema de Información Geográfica (GIS), el Sistema de Posicionamiento Global (GPS) y la Percepción Remota (RS), para estudiar la tecnología de la agricultura de precisión.

Protección del Cultivo

La introducción del gorgojo polinizador, Elaeidobius kamerunicas Faust, ha ahorrado considerable mano de obra requerida para la polinización asistida en plantaciones de palma de aceite. Se ha calculado que casi RM 250/hectárea/año (US\$68) se han ahorrado utilizando los gorgojos para la polinización.

Con la introducción de lechuzas de los graneros (Tyto alba) en plantaciones, fue posible controlar eficazmente la población de ratas. El uso de cebo para ratas se suspendió y el costo del control de las ratas se ha reducido de RM 20/hectárea/año (US\$ 5) a RM 2/hectárea/año.

La Ganoderma es una enfermedad importante que afecta la palma de aceite. Se han identificado especies de Ganoderma con diferentes niveles de virulencia. El MPOB también ha desarrollado una técnica de inoculación para seleccionar las progenies de DxP. La selección inicial mostró que todos los cruzamientos son susceptibles.

Mecanización de las granjas

La industria de plantaciones de palma de aceite requiere grandes cantidades de mano de obra, comparada con el cultivo de la soya, el girasol, el maíz, etc. Actualmente la relación mano de obra: tierra es de 1: 10 y con la mecanización, es posible reducirla a 1: 15. El cargador mecánico de RFF, el "Grabber", fue diseñado por el MPOB y fue bien aceptado por la industria.

Biomasa

Los racimos vacíos (EFB) y las hojas podadas están disponibles diariamente en las plantaciones de palma de aceite. Las hojas y los troncos de palma de aceite están disponibles al momento de la renovación. Con estas materias primas, es posible comenzar una industria basada en lignocelulosa. El MPOB pudo desarrollar tablas de partículas, tablas de fibra (MDF), fibra para hacer sogas, papel de pulpa, medios de crecimiento, etc., utilizando la biomasa de la palma de aceite.

Uso como alimento

Casi un 80% del aceite de palma se utiliza para propósitos comestibles. Se utiliza como aceite para cocinar/freír, margarinas, manteca de pastelería, vanaspati, mantecas para confitería, etc. El MPOB ha mejorado varias formulaciones y ha diversificado el uso del aceite de palma. Se están

desarrollando productos alimenticios modernos utilizando el aceite de palma.

Salud y nutrición del aceite de palma

El MPOB ha proporcionado donaciones para investigación por un valor de US\$ 6 millones a 120 proyectos de investigación en todo el mundo para estudiar las propiedades nutritivas del aceite de palma. Se ha demostrado que el aceite de palma reduce el colesterol malo, LDL, y eleva el colesterol bueno, HDL. Los tocoferoles y tocotrienoles (vitamina E) en el aceite de palma actúan como un antioxidante.

Oleoquímicos

Se hicieron oleoquímicos básicos, tales como ácidos grasos, esteres grasos, alcoholes grasos, nitrógenos grasos, glicerol, etc. del aceite de palma. El énfasis actual es producir los productos cosméticos para el consumidor final para mercados locales y del exterior.

En el próximo siglo, las investigaciones del MPOB harán énfasis en el desarrollo de productos de grado farmacéutico del aceite de palma.

La Competitividad de la industria de la palma de aceite

Confiabilidad de abastecimiento
En vista de que el aceite de palma proviene
de un cultivo perenne, es sumamente confia ble, comparado con cultivos oleaginosos anua les. Una vez sembrado, el cultivo producirá du rante 25 años. Su provisión se puede predecir

2. Productividad

(Tabla 19).

La palma de aceite es el cultivo oleaginoso más eficaz. Es capaz de producir 5.000 kg de fruto de palma por hectárea, lo cual es 10 veces más productivo que otros cultivos de aceite (Tabla 20).

3. Precio, Costo y Calidad

La alta productividad de la palma de aceite tiene como resultado el costo de la producción del aceite de palma. La ventaja del precio,

Tabla 19. Rendimiento de la palma de aceite en distintas clases de rendimiento

Clases de Rendimiento	Rendimiento de Aceite (t/ħa/año)
Máximo teórico	17,0
- Mejor rendimiento experimental	
- Mejores árboles individuales	12,2
- Progenies seleccionadas	10,2
	8,2
Buenos Rendimientos Comerciales (Suelos costeros, Malasia)	5,0
Promedio del rendimiento nacional - Plantación, Malasia	3.7
	1,6
- Plantación, Nigeria - Palmares nativos, Nigeria	

Tabla 20. Promedio de la productividad de varios cultivos oleaginosos principales.

Cultivo	Aceite/ha/año (kg)
Soya	351
Algodón	188
Mani	384
Girasol	504
Colza	556
Ajonjolí	178
Aceite de Palma	3.200
Aceite de Palmiste	454
Copra	356

junto con la alta calidad, han hecho que el aceite de palma malasio sea muy competitivo (Tabla 21).

4. Ambientalmente compatible y de eficacia de energía

Siendo que es un cultivo perenne, se siembre una vez cada 25 años. La relación de entrada y salida de energía es de 1: 9 (Tabla 22).

Retos que enfrenta la Industria de la Palma de Aceite en Malasia

- El nivel de mecanización en la industria es lento. Utiliza una gran cantidad de mano de obra, a una tasa de 1 hombre: 10 hectáreas, comparado con 1 hombre: 90 hectáreas en el caso de soya y otros cultivos anuales.
- 2. Los rendimientos nacionales de RFF han estado estancados en alrededor de 18 20 t/

ha durante los últimos 10 años y al mismo tiempo la tasa de extracción de aceite está decayendo debido a varios factores (Tabla 23). En el caso de los cultivos anuales, hay un aumento gradual en el rendimiento por hectárea y la brecha de rendimiento entre la palma de aceite y otros cultivos se está estrechando lentamente.

3. La fluctuación en los precios de los aceites y grasas afecta a la industria de la palma de

Tabla 21. Costos comparativos de la producción de aceites y grasas seleccionadas

País	Aceile	Costo USS/tonelada
Indonesia	Palma	185
Malasia	Palma	240
Estados Unidos	Soya	400
Canadá	Colza	648
Comunidad Económica Europea	Colza.	900

Tabla 22 Valores de entrada y salida de energía **para** productos de la palma de aceite, comparados con algunos otros cultivos

Sistema agrícola	Valor	anual de ener	gía Gj/ha
	Entrada	Salida	Relación
Palma de aceite (Malasia)	19,2	182,1	9,5
Maíz (Estados Unidos)	30,0	84,5	2,8
Maíz (México)	1,0	29,4	30,0
Arroz (Estados Unidos)	65,5	84,1	1,3
Arroz (Filipinas)	1,0	24,4	4,4
Trigo (India)	6,6	11,2	1,7
Semilla de colza (Reino Unido)	23,0	70,0	3,0
Soya (Estados Unidos)	20,0	50,0	2,5
Arveja (Reino Unido) Remolacha azucarera	10,0	10,3	0,94
(Reino Unido)	124,4	82,9	0,7
Lechuga (Reino Unido)	5.300,0	10,5	0,002

Tabla 23. Rendimiento de Racimos de Frutas Frescas. Aceite de Palma Crudo y Palmiste 1975-1999 (toneladas/hectárea).

Año	Racimos de Frutas Frescas	Aceite de Paima Crudo	Palmiste
1975	17,95	3,66	0,74
1985	22,15	4,33	1,28
1995	18,93	3,51	1,08
1999	19,26	3,58	1,03

aceite adversamente. A diferencia de los cultivos anuales, la industria de la palma de aceite no puede ajustar las siembras acorde con la situación de oferta y demanda.

Con las estrategias y los desarrollos de investigación mencionados arriba, no hay duda de que el aceite de palma será el aceite vegetal dominante el próximo siglo.

CONCLUSIÓN

La palma de aceite es un cultivo perenne y es compatible con el medio ambiente. El cultivo no requiere siembra anual. La palma de aceite necesita muy pocos herbicidas para controlar las malezas (sólo en cultivos jóvenes) y los problemas de plagas y enfermedades son relativamente pocos.

El MPOB ha ideado varias estratégicas de investigación y desarrollo para la supervivencia de la industria. Son las siguientes:

- La estrategia de altos ingresos genera una capacidad de altos ingresos de las plantaciones de palma de aceite.
- La estrategia de cero-desechos máxima utilización de la biomasa producida por la plantación de palma de aceite.
- 3. La estrategia de valor agregado actividades de productos acabados con valor agregado.

AGRADECIMIENTOS

Los autores agradecen al Director General del MPOB por el permiso para presentar este trabajo.

REFERENCIAS

ANÓNIMO. 1999. Intergrated pest management in oil palms. Golden Hope Plantations Berhad. 18p.

CHAN, K.W. 1999. Quality in the next millennium for the plantation industry. Paper presented at Johore Tenggara Oil Palm Berhad's Third managers Seminar Regengy Hotel and Resort, Port Dickson, NSDK, 12-14 august 1999.

MOPB homepage http://www.mpob.gov.my

PORIM Annual Research Reports.

RAJANAIDU, N.; KUSHAIRI, A.; JALANI, B.S. 1999. Systems Approach to the Management of Oil Palm Breeding and Biotechnology. 1999 PORIM International Palm Oil Congress. Proceedings PORIM, Kuala Lumpur, p.561-581.