Biocarbón como producto de la biomasa residual de palma de aceite en un concepto de economía circular

Autores/as

  • David A. Munar F.
  • Nidia E. Ramírez C.
  • Jesús A. García Núñez

Palabras clave:

Sostenibilidad, Plantas de beneficio, Biomasa, Rentabilidad, Sector palmero

Resumen

La agroindustria de la palma de aceite ha venido trabajando en modelos de producción sostenible, donde se destaca la obtención de energía renovable y el cierre de ciclos de materia y energía dentro de sus procesos. Además, en los últimos años, la agroindustria de la palma de aceite ha cambiado la percepción que se tiene de una planta de beneficio ya que no solo se extrae el aceite de palma, sino que también se pueden obtener productos a partir de biomasa. Dentro de las tecnologías emergentes y más promisorias para estas biorrefinerías, está el proceso de pirólisis para obtención de biocarbón con diferentes usos comerciales, dentro de los que resaltan la mejora de suelos, el secuestro de carbono y la adsorción de contaminantes.

Este boletín es un insumo que contribuye al mejoramiento de la rentabilidad del sector palmero mediante la generación de nuevos productos a partir de biomasa, así como a la adopción de prácticas ambientales sostenibles para mitigar el cambio climático y mejorar la calidad de los suelos. En consecuencia, presenta aspectos técnicos que recogen la experiencia y el conocimiento de Cenipalma, además de otras entidades nacionales e internacionales, en lo relativo a la producción de biocarbón como una posibilidad de dar valor agregado a la biomasa residual de palma de aceite en Colombia.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Chemicals, Ind. Biotechnol. 8 (2012) 262–271. https://doi.org/10.1089/ind.2012.1539.
[2] K. McCormick, N. Kautto, The Bioeconomy in Europe: An Overview, Sustain. 5 (2013) 2589–2608. https://doi.org/10.3390/su5062589.
[3] A.S. Brandão, A. Gonçalves, J.M.R.C.A. Santos, Circular bioeconomy strategies: From scientific research to commercially viable products, J. Clean. Prod. 295 (2021). https://doi.org/10.1016/j.jclepro.2021.126407.
[4] N.E. Ramírez-Contreas, Á.S. Silva-Ramírez, E.M. Garzón-Gonzáles, E.E. Yáñez Angarita, Boletín Técnico No. 30 Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite, Centro de Investigación en Palma de Aceite Cenipalma, 2011.
[5] N. Ramirez-Contreas, A. Arévalo, and J. A. Garcia-Nuñez, “Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia *,” pp. 41–54, 2015.
[6] J.A. Garcia-nunez, N.E. Ramirez-contreras, D.T. Rodriguez, E. Silva-Lora, C.S. Frear, C. Stockle, M. Garcia-Perez, D. Tatiana, E. Silva-Lora, C. Stuart, C. Stockle, M. Garcia-Perez, Resources, Conservation and Recycling Evolution of palm oil mills into
bio-refineries: Literature review on current and potential uses of residual biomass and effluents, “Resources, Conserv. Recycl. 110 (2016) 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022.
[7] J.A. Garcia-nunez, D. Tatiana, C. Andr, N. Elizabeth, E. Eduardo, S. Lora, C. Stuart, C. Stockle, J. Amonette, M. Garcia-perez, Biomass and Bioenergy Evaluation of alternatives for the evolution of palm oil mills into biore fi neries, Biomass and Bioenergy. (2016). https://doi.org/10.1016/j.biombioe.2016.05.020.
[8] N.E. Ramirez-Contreras, D.A. Munar-Florez, J.A. Garcia-Nuñez, M. Mosquera-Montoya, A.P.C. Faaij, The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives, J. Clean. Prod. 258 (2020). https://doi.org/10.1016/j.jclepro.2020.120757.
[9] T.J. Purakayastha, T. Bera, D. Bhaduri, B. Sarkar, S. Mandal, P. Wade, S. Kumari, S. Biswas, M. Menon, H. Pathak, D.C.W. Tsang, A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security, Chemosphere. 227 (2019) 345–365. https://doi.org/10.1016/j.chemosphere.2019.03.170.
[10] W. Xiang, X. Zhang, J. Chen, W. Zou, F. He, X. Hu, D.C.W. Tsang, Y.S. Ok, B. Gao, Biochar technology in wastewater treatment: A critical review, Chemosphere. 252 (2020)126539. https://doi.org/10.1016/j.chemosphere.2020.126539.
S.H. Kong, S.K. Loh, R.T. Bachmann, S.A. Rahim, J. Salimon, Biochar from oil palm biomass: A review of its potential and challenges, Renew. Sustain. Energy Rev. 39 (2014) 729–739. https://doi.org/10.1016/j.rser.2014.07.107.
[12] E.C. Hammer, Z. Balogh-Brunstad, I. Jakobsen, P.A. Olsson, S.L.S. Stipp, M.C. Rillig, A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces, Soil Biol. Biochem. 77 (2014) 252–260. https://doi.org/10.1016/j.soilbio.2014.06.012.
[13] H. Zheng, Z. Wang, X. Deng, S. Herbert, B. Xing, Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil, Geoderma. 206 (2013) 32–39. https://doi.org/10.1016/j.geoderma.2013.04.018.
[14] X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Chemosphere Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere. 125 (2015) 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058.
[15] K. Qian, A. Kumar, H. Zhang, D. Bellmer, R. Huhnke, Recent advances in utilization of biochar, Renew. Sustain. Energy Rev. 42 (2015) 1055–1064. https://doi.org/10.1016/j.rser.2014.10.074.
[16] M. de Comercio, Estrategia Nacional de Economía Circular, n.d.
[17] Founding Partners of the Ellen MacArthur Foundation, Towards the circular economy. Economic and business rationale for an accelerated transition, 2013.
[18] J. A. Garcia-Nunez et al., “Evaluation of alternatives for the evolution of palm oil mills into biorefineries,” Biomass and Bioenergy, vol. 95, pp. 310–329, Dec. 2016, doi: 10.1016/j.biombioe.2016.05.020.
[19] D. T. Rodríguez, N. E. Ramírez, and J. A. García, “Evaluación de la incidencia de la producción de compost, usando biomasa de la planta de beneficio, en la huella de carbono del aceite de palma,” Rev. Palmas, vol. 36, no. 1, pp. 27–39, 2015.
[20] A. Demirbas, M.F. Demirbas, Biorefineries, in: Springer Science & Business Media, 2010: pp. 159–181. https://doi.org/10.1007/978-1-84996-050-2_7.
[21] J. A. Garcia N, M. M. Cardenas M, and E. E. Yañez A, “Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia,” vol. 31, no. 2, pp. 41–48, 2010
[22] W.C. Lim, C. Srinivasakannan, N. Balasubramanian, Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon, J. Anal. Appl. Pyrolysis. 88 (2010) 181–186. https://doi.org/10.1016/j.jaap.2010.04.004.
[23] E.I. Wiloso, R. Heijungs, G. Huppes, K. Fang, Effect of biogenic carbon inventory on the life cycle assessment of bioenergy: Challenges to the neutrality assumption, J. Clean. Prod. 125 (2016) 78–85. https://doi.org/10.1016/j.jclepro.2016.03.096.
[24] P. Shrivastava, P. Khongphakdi, A. Palamanit, A. Kumar, P. Tekasakul, Investigation of physicochemical properties of oil palm biomass for evaluating potential of biofuels production via pyrolysis processes, Biomass Convers. Biorefinery. (2020). https://doi.org/10.1007/s13399-019-00596-x.
[25] W. Jong and J. Ommen, Biomass as a Sustainable Energy Source for the Future. Hoboken, NJ: John Wiley & Sons, Inc, 2014.
[26] D. Angın, Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake, Bioresour. Technol. 128 (2013) 593–7. https:// doi.org/10.1016/j.biortech.2012.10.150.
[27] A. Urien, “Obtención de biocarbones y biocombustibles mediante pirólisis de biomasa residual,” tesis de grado, 2013. http://digital.csic.es/bitstream/10261/80225/1/ BIOCARBONES_CENIM_CSIC.pdf (accessed Feb. 15, 2015).
[28] International Biochar Initiative | International Biochar Initiative, (n.d.). http://www.biochar-international.org/ (accessed February 6, 2015).
[29] J. Lehmann, Biochar for Environmental Management, Routledge, 2012. https://doi. org/10.4324/9781849770552.
[30] Y.H. Chan, K.W. Cheah, B.S. How, A.C.M. Loy, M. Shahbaz, H.K.G. Singh, N.R. Yusuf, A.F.A. Shuhaili, S. Yusup, W.A.W.A.K. Ghani, J. Rambli, Y. Kansha, H.L. Lam, B.H. Hong, S.L. Ngan, An overview of biomass thermochemical conversion technologies
in Malaysia, Sci. Total Environ. 680 (2019) 105–123. https://doi.org/10.1016/j.scitotenv.2019.04.211.
[31] R. Kumar, V. Strezov, H. Weldekidan, J. He, S. Singh, T. Kan, B. Dastjerdi, Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels, Renew. Sustain. Energy Rev. 123 (2020).
https://doi.org/10.1016/j.rser.2020.109763.
[32] R. Bakker, H. Elbersen, Managing ash content and quality in herbaceous biomass: an analysis from plant to product, 14th Eur. Biomass Conf. Exhib. Paris, Fr. (2005) 1–4.
[33] E. Heinzle, A. P. Biwer, and C. L. Cooney, Development of Sustainable Bioprocesses, vol. 6. Chichester, UK: John Wiley & Sons, Ltd, 2006.
[34] S. Lee, J. G. Speight, and S. K. Loyalka, Eds., Handbook of Alternative Fuel Technologies. CRC Press, 2014.
[35] B. Balagurumurthy, R. Singh, T. Bhaskar, Recent Advances in Thermo-Chemical Conversion of Biomass, Elsevier B.V., 2015. https://doi.org/10.1016/B978-0-444- 63289-0.00004-1.
[36] D.K. Seo, S.S. Park, J. Hwang, T.U. Yu, Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species, J. Anal. Appl. Pyrolysis. 89 (2010) 66–73. https://doi.org/10.1016/j.
jaap.2010.05.008.
[37] A. Colantoni, N. Evic, R. Lord, S. Retschitzegger, A.R. Proto, F. Gallucci, D. Monarca, Characterization of biochars produced from pyrolysis of pelletized agricultural
residues, Renew. Sustain. Energy Rev. 64 (2016) 187–194. https://doi.org/10.1016/j.rser.2016.06.003.
[38] F. Abnisa, A. Arami-Niya, W.M.A.W. Daud, J.N. Sahu, Characterization of Bio-oil and Bio-char from Pyrolysis of Palm Oil Wastes, Bioenergy Res. 6 (2013) 830–840.
https://doi.org/10.1007/s12155-013-9313-8.
[39] R. Singh, A. Prakash, B. Balagurumurthy, T. Bhaskar, Hydrothermal Liquefaction of Biomass, (2015) 269–291. https://doi.org/10.1016/B978-0-444-63289-0.00010-7.
[40] L. Qin, W.-C. Li, J.-Q. Zhu, B.-Z. Li, Y.-J. Yuan, Hydrolysis of Lignocellulosic Biomass to Sugars, in: 2017: pp. 3–41. https://doi.org/10.1007/978-981-10-4172-3_1.
[41] R. C. Brown, Thermochemical Processing of Biomass: conversion into fuels, chemicals and power. Wiley, 2019.
[42] T. Processing, Thermochemical Processing of Biomass, n.d.
[43] Instituto para la Diversificacion y Ahorro de Energia, Biomasa Gasificación, 2007.
[44] Argonne GREET Model, (n.d.). https://greet.es.anl.gov/ (accessed March 31, 2015).
[45] Z. Zhou, D. Liu, X. Zhao, Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose, Renew. Sustain. Energy Rev. 146 (2021) 111169. https://doi.org/10.1016/j.rser.2021.111169.
[46] I. Kurnia, A. Yoshida, N. Chaihad, A. Bayu, Y. Kasai, A. Abudula, G. Guan, Hydrolysis of cellulose and woody biomass over sustainable weak-acid carbon catalysts from alkaline lignin, Fuel Process. Technol. 196 (2019) 106175. https://doi.org/10.1016/j.fuproc.2019.106175.
[47] B. Meryemoglu, Biomass hydrolysis with phosphotungstic acid, Catal. Commun. 149 (2021) 106248. https://doi.org/10.1016/j.catcom.2020.106248.
[48] M.K. Bahng, C. Mukarakate, D.J. Robichaud, M.R. Nimlos, Current technologies for analysis of biomass thermochemical processing: A review, Anal. Chim. Acta. 651 (2009) 117–138. https://doi.org/10.1016/j.aca.2009.08.016.
[49] V. Dhyani, T. Bhaskar, Pyrolysis of biomass, Biomass, Biofuels, Biochem. Biofuels Altern. Feed. Convers. Process. Prod. Liq. Gaseous Biofuels. (2019) 217–244. https://doi.org/10.1016/B978-0-12-816856-1.00009-9.
[50] P. Debiagi, G. Gentile, A. Cuoci, A. Frassoldati, E. Ranzi, T. Faravelli, A predictive model of biochar formation and characterization, J. Anal. Appl. Pyrolysis. 134 (2018) 326–335. https://doi.org/10.1016/j.jaap.2018.06.022.
[51] J.A. Garcia-Nunez, M.R. Pelaez-Samaniego, M.E. Garcia-Perez, I. Fonts, J. Abrego, R.J.M. Westerhof, M. Garcia-Perez, Historical Developments of Pyrolysis Reactors: A Review, 2017. https://doi.org/10.1021/acs.energyfuels.7b00641.
[52] F.X. Collard, M. Carrier, J.F. Görgens, Fractionation of Lignocellulosic Material With Pyrolysis Processing, Biomass Fractionation Technol. a Lignocellul. Feed. Based Biorefinery. (2016) 81–101. https://doi.org/10.1016/B978-0-12-802323-5.00004-9.
[53] A. Arami-Niya, W.M.A.W. Daud, F.S. Mjalli, Using granular activated carbon prepared from oil palm shell by ZnCl 2 and physical activation for methane adsorption, J. Anal. Appl. Pyrolysis. 89 (2010) 197–203.ttps://doi.org/10.1016/j.jaap.2010.08.006.
[54] A.K. Sakhiya, P. Baghel, A. Anand, V.K. Vijay, P. Kaushal, A comparative study of physical and chemical activation of rice straw derived biochar to enhance Zn+2 adsorption, Bioresour. Technol. Reports. 15 (2021) 100774. https://doi.org/10.1016/j.
biteb.2021.100774.
[55] S. Biswas, H. Siddiqi, B.C. Meikap, T.K. Sen, M. Khiadani, Preparation and Characterization of Raw and Inorganic Acid-Activated Pine Cone Biochar and Its Application in the Removal of Aqueous-Phase Pb2+ Metal Ions by Adsorption, Water. Air. Soil Pollut. 231 (2020). https://doi.org/10.1007/s11270-019-4375-7.
[56] U. Iriarte-Velasco, I. Sierra, L. Zudaire, J.L. Ayastuy, Preparation of a porous biochar from the acid activation of pork bones, Food Bioprod. Process. 98 (2016) 341–353. https://doi.org/10.1016/j.fbp.2016.03.003.
[57] Q. Han, J. Wang, B.A. Goodman, J. Xie, Z. Liu, High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue, Powder Technol. 366 (2020) 239–248.https://doi.org/10.1016/j.powtec.2020.02.013.
[58] L. Cao, I.K.M. Yu, D.C.W. Tsang, S. Zhang, Y.S. Ok, E.E. Kwon, H. Song, C.S. Poon, Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural, Bioresour. Technol. 267 (2018) 242–248. https://doi.org/10.1016/j.biortech.2018.07.048.
[59] L. Sun, D. Chen, S. Wan, Z. Yu, Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids, Bioresour. Technol. 198 (2015) 300–308. https://doi.org/10.1016/j.biortech.2015.09.026.
[60] O. Oginni, K. Singh, G. Oporto, B. Dawson-Andoh, L. McDonald, E. Sabolsky, Influence of one-step and two-step KOH activation on activated carbon characteristics, Bioresour. Technol. Reports. 7 (2019) 100266. https://doi.org/10.1016/j.biteb.2019.100266.
[61] X. Li, C. Wang, J. Zhang, J. Liu, B. Liu, G. Chen, Preparation and application of magnetic biochar in water treatment: A critical review, Sci. Total Environ. 711 (2020) 134847. https://doi.org/10.1016/j.scitotenv.2019.134847.
[62] X. Liu, M. Gao, W. Qiu, Z.H. Khan, N. Liu, L. Lin, Z. Song, Fe–Mn–Ce oxide-modified biochar composites as efficient adsorbents for removing As(III) from water: adsorption performance and mechanisms, Environ. Sci. Pollut. Res. 26 (2019) 17373–
17382. https://doi.org/10.1007/s11356-019-04914-8.
[63] N.A. Zubbri, A.R. Mohamed, N. Kamiuchi, M. Mohammadi, Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation, Environ. Sci. Pollut. Res. 27 (2020) 11809–11829. https://doi.org/10.1007/s11356-020-07734-3.
[64] J. Liu, J. Jiang, Y. Meng, A. Aihemaiti, Y. Xu, H. Xiang, Y. Gao, X. Chen, Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review, J. Hazard. Mater. 388 (2020) 122026. ttps://doi.org/10.1016/j.jhazmat.
2020.122026.
[65] A.K. Sakhiya, A. Anand, P. Kaushal, Production, activation, and applications of biochar in recent times, Springer Singapore, 2020. https://doi.org/10.1007/s42773-020-00047-1.
[66] H. Xu, A. Cai, D. Wu, G. Liang, J. Xiao, M. Xu, G. Colinet, W. Zhang, Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C:N ratio and soil pH: A global meta-analysis, Soil
Tillage Res. 213 (2021). https://doi.org/10.1016/j.still.2021.105125.
[67] A.R. Hidayu, N.F. Mohamad, S. Matali, A.S.A.K. Sharifah, Characterization of activated carbon prepared from oil palm empty fruit bunch using BET and FT-IR techniques, Procedia Eng. 68 (2013) 379–384. https://doi.org/10.1016/j.proeng.2013.12.195.
[68] A. Tomczyk, Z. Sokołowska, P. Boguta, Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects, Rev. Environ. Sci. Biotechnol. 19 (2020) 191–215. https://doi.org/10.1007/s11157-020-09523-3.
[69] L. Rodriguez Ortiz, E. Torres, D. Zalazar, H. Zhang, R. Rodriguez, G. Mazza, Influence of pyrolysis temperature and bio-waste composition on biochar characteristics, Renew. Energy. 155 (2020) 837–847. https://doi.org/10.1016/j.renene.2020.03.181.
[70] H. Yu, W. Zou, J. Chen, H. Chen, Z. Yu, J. Huang, H. Tang, X. Wei, B. Gao, Biochar amendment improves crop production in problem soils: A review, J. Environ. Manage. 232 (2019) 8–21. https://doi.org/10.1016/j.jenvman.2018.10.117.
[71] M. Kamali, D. Jahaninafard, A. Mostafaie, M. Davarazar, A.P.D. Gomes, L.A.C. Tarelho, R. Dewil, T.M. Aminabhavi, Scientometric analysis and scientific trends on biochar application as soil amendment, Chem. Eng. J. 395 (2020) 125128. https://doi.
org/10.1016/j.cej.2020.125128.
[72] E.L. Dominguez, A. Uttran, S.K. Loh, M.-H. Manero, R. Upperton, M. Idris Tanimu, R. Thomas Bachmann, Characterisation of industrially produced oil palm kernel shell biochar and its potential as slow release nitrogen-phosphate fertilizer and carbon sink, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.05.143.
[73] P. Campos, A.Z. Miller, H. Knicker, M.F. Costa-Pereira, A. Merino, J.M. De la Rosa, Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment, Waste Manag. 105 (2020) 256–267. https://doi.org/10.1016/j.wasman.2020.02.013.
[74] R. Hussain, K. Ravi, A. Garg, Influence of biochar on the soil water retention characteristics (SWRC): Potential application in geotechnical engineering structures, Soil Tillage Res. 204 (2020) 104713. https://doi.org/10.1016/j.still.2020.104713.
[75] Y. Liu, K. Guo, Y. Zhao, S. Li, Q. Wu, C. Liang, X. Sun, Q. Xu, J. Chen, H. Qin, Change in composition and function of microbial communities in an acid bamboo (Phyllostachys praecox) plantation soil with the addition of three different biochars, For. Ecol. Manage. 473 (2020) 118336. https://doi.org/10.1016/j.foreco.2020.118336.
[76] V. Martinsen, V. Alling, N.L. Nurida, J. Mulder, S.E. Hale, C. Ritz, D.W. Rutherford, A. Heikens, G.D. Breedveld, G. Cornelissen, pH effects of the addition of three biochars to acidic Indonesian mineral soils, Soil Sci. Plant Nutr. 61 (2015) 821–834.
https://doi.org/10.1080/00380768.2015.1052985.
[77] R. Chintala, J. Mollinedo, T.E. Schumacher, D.D. Malo, J.L. Julson, Effect of biochar on chemical properties of acidic soil, Arch. Agron. Soil Sci. 60 (2014) 393–404. https://doi.org/10.1080/03650340.2013.789870.
[78] R.A. Bakar, Z.A. Razak, S.H. Ahmad, B.J. Seh-Bardan, L.C. Tsong, C.P. Meng, Influence of Oil Palm Empty Fruit bunch Biochar on floodwater pH and yield components of Rice cultivated on acid Sulphate soil under Rice Intensification practices,
Plant Prod. Sci. 18 (2015) 491–500. https://doi.org/10.1626/pps.18.491.
[79] S. Yavari, N.B. Sapari, A. Malakahmad, S. Yavari, Degradation of imazapic and imazapyr herbicides in the presence of optimized oil palm empty fruit bunch and rice husk biochars in soil, J. Hazard. Mater. 366 (2019) 636–642. https://doi.org/10.1016/j.jhazmat.2018.12.022.
[80] K.E. Anyaoha, R. Sakrabani, K. Patchigolla, A.M. Mouazen, Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges, Resour. Conserv. Recycl. 136 (2018) 399–409. https://doi.org/10.1016/j.resconrec.2018.04.022.
[81] Z. Luo, B. Yao, X. Yang, L. Wang, Z. Xu, X. Yan, L. Tian, H. Zhou, Y. Zhou, Novel insights into the adsorption of organic contaminants by biochar: A review, Chemosphere.
287 (2022) 132113. https://doi.org/10.1016/j.chemosphere.2021.132113.
[82] J.S. Cha, S.H. Park, S.C. Jung, C. Ryu, J.K. Jeon, M.C. Shin, Y.K. Park, Production and utilization of biochar: A review, J. Ind. Eng. Chem. 40 (2016) 1–15. https://doi.
org/10.1016/j.jiec.2016.06.002.
[83] W. Suliman, J.B. Harsh, N.I. Abu-Lail, A.M. Fortuna, I. Dallmeyer, M. Garcia-Perez, Modification of biochar surface by air oxidation: Role of pyrolysis temperature, Biomass and Bioenergy. 85 (2016) 1–11. https://doi.org/10.1016/j.biombioe.2015.11.030.
[84] D.A. Munar-Florez, D.A. Varón-Cardenas, N.E. Ramírez-Contreras, J.A. García-Núñez, Adsorption of ammonium and phosphates by biochar produced from oil palm shells: Effects of production conditions, Results Chem. 3 (2021) 100119. https://doi.org/10.1016/j.rechem.2021.100119.
[85] N.L. Panwar, A. Pawar, B.L. Salvi, Comprehensive review on production and utilization of biochar, SN Appl. Sci. 1 (2019) 1–19. https://doi.org/10.1007/s42452-019-0172-6.
[86] A.W. Samsuri, F. Sadegh-Zadeh, B.J. Seh-Bardan, Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals, Int. J. Environ. Sci. Technol. 11 (2014) 967–976. https://doi.org/10.1007/s13762-013-0291-3.
[87] A.A. Lawal, M.A. Hassan, M.A.A. Farid, T.A.T. Yasim-Anuar, M.Z.M. Yusoff, M.R. Zakaria, A.M. Roslan, M.N. Mokhtar, Y. Shirai, Production of biochar from oil palm frond by steam pyrolysis for removal of residual contaminants in palm oil mill effluent final discharge, J. Clean. Prod. 265 (2020) 121643. https://doi.org/10.1016/j.jclepro.2020.121643.
[88] A.A. Lawal, M.A. Hassan, M.A. Ahmad Farid, T.A.T. Yasim-Anuar, M.Z. Mohd Yusoff, M.R. Zakaria, A.M. Roslan, M.N. Mokhtar, Y. Shirai, One-step steam pyrolysis for the production of mesoporous biochar from oil palm frond to effectively remove
phenol in facultatively treated palm oil mill effluent, Environ. Technol. Innov. 18 (2020) 100730. https://doi.org/10.1016/j.eti.2020.100730.
[89] A.C. Lua, A detailed study of pyrolysis conditions on the production of steam-activated carbon derived from oil-palm shell and its application in phenol adsorption, Biomass Convers. Biorefinery. 10 (2020) 523–533. https://doi.org/10.1007/s13399-019-00447-9.
[90] A. Herrera-Barros, C. Tejada-Tovar, A. Villabona-Ortíz, A.D. González-Delgado, J. Benitez-Monroy, Cd (II) and Ni (II) uptake by novel biosorbent prepared from oil palm residual biomass and Al2O3 nanoparticles, Sustain. Chem. Pharm. 15 (2020). https://doi.org/10.1016/j.scp.2020.100216.
[91] Y. Chen, X. Zhang, W. Chen, H. Yang, H. Chen, The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance, Bioresour. Technol. 246 (2017) 101–109. https://doi.org/10.1016/j.biortech.2017.08.138.
[92] X. Zhou, T.B. Moghaddam, M. Chen, S. Wu, S. Adhikari, Biochar removes volatile organic compounds generated from asphalt, Sci. Total Environ. 745 (2020) 141096. https://doi.org/10.1016/j.scitotenv.2020.141096.
[93] S. Ding, Y. Liu, Adsorption of CO2 from flue gas by novel seaweed-based KOHactivated porous biochars, Fuel. 260 (2020) 116382. https://doi.org/10.1016/j.fuel.2019.116382.
[94] X. Han, H. Chen, Y. Liu, J. Pan, Study on removal of gaseous hydrogen sulfide based on macroalgae biochars, J. Nat. Gas Sci. Eng. 73 (2020) 103068. https://doi.org/10.1016/j.jngse.2019.103068.
[95] J. Kanjanarong, B.S. Giri, D.P. Jaisi, F.R. Oliveira, P. Boonsawang, S. Chaiprapat,R.S. Singh, A. Balakrishna, S.K. Khanal, Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: Evaluation
of efficiency and mechanisms, Bioresour. Technol. 234 (2017) 115–121. https://doi.org/10.1016/j.biortech.2017.03.009.
[96] H. La, J.P.A. Hettiaratchi, G. Achari, The influence of biochar and compost mixtures, water content, and gas flow rate, on the continuous adsorption of methane in a fixed bed column, J. Environ. Manage. 233 (2019) 175–183. https://doi.org/10.1016/j.jenvman.2018.12.015.
[97] Q. Shi, Y. Wang, X. Zhang, B. Shen, F. Wang, Y. Zhang, Hierarchically porous biochar synthesized with CaCO3 template for efficient Hg0 adsorption from flue gas, Fuel Process. Technol. 199 (2020) 106247. https://doi.org/10.1016/j.fuproc.2019.
106247.
[98] N. Iberahim, S. Sethupathi, C.L. Goh, M.J.K. Bashir, W. Ahmad, Optimization of activated palm oil sludge biochar preparation for sulphur dioxide adsorption, J. Environ. Manage. 248 (2019) 109302. https://doi.org/10.1016/j.jenvman.2019.109302.
[99] A. Promraksa, N. Rakmak, Biochar production from palm oil mill residues and application of the biochar to adsorb carbon dioxide, Heliyon. 6 (2020). https://doi.org/10.1016/j.heliyon.2020.e04019.
[100] M. Aziz, T. Kurniawan, T. Oda, T. Kashiwagi, Advanced power generation using biomass wastes from palm oil mills, Appl. Therm. Eng. 114 (2016) 1378–1386. https://doi.org/10.1016/j.applthermaleng.2016.11.031.
[101] X. Chen, Q. Che, S. Li, Z. Liu, H. Yang, Y. Chen, X. Wang, J. Shao, H. Chen, Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization
of bio-oil quality and yield, Fuel Process. Technol. 196 (2019) 106180.https://doi.org/10.1016/j.fuproc.2019.106180.
[102] F.B. Ahmad, Z. Zhang, W.O.S. Doherty, I.M. O’Hara, The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery,
Renew. Sustain. Energy Rev. 109 (2019) 386–411. https://doi.org/10.1016/j.rser.2019.04.009.
[103] F. Abnisa, W.M. a. W. Daud, W.N.W. Husin, J.N. Sahu, Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process, Biomass and Bioenergy. 35 (2011) 1863–1872. https://doi.org/10.1016/j.biombioe.2011.01.033.
[104] M.D. Kostić, A. Bazargan, O.S. Stamenković, V.B. Veljković, G. McKay, Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar, Fuel. 163 (2016) 304–313. https://doi.org/10.1016/j.fuel.2015.09.042.
[105] T. Do Minh, J. Song, A. Deb, L. Cha, V. Srivastava, M. Sillanpää, Biochar based catalysts for the abatement of emerging pollutants: A review, Chem. Eng. J. 394 (2020)124856. https://doi.org/10.1016/j.cej.2020.124856.
[106] J. Lee, K.H. Kim, E.E. Kwon, Biochar as a Catalyst, Renew. Sustain. Energy Rev. 77 (2017) 70–79. https://doi.org/10.1016/j.rser.2017.04.002.
[107] Y.B. Jo, J.S. Cha, J.H. Ko, M.C. Shin, S.H. Park, J.K. Jeon, S.S. Kim, Y.K. Park, NH3 selective catalytic reduction (SCR) of nitrogen oxides (NOx) over activated sewage sludge char, Korean J. Chem. Eng. 28 (2011) 106–113. https://doi.org/10.1007/
s11814-010-0283-7.
[108] S.I. Anthonysamy, P. Lahijani, M. Mohammadi, A.R. Mohamed, Low temperature adsorption of nitric oxide on cerium impregnated biomass-derived biochar, Korean J. Chem. Eng. 37 (2020) 130–140. https://doi.org/10.1007/s11814-019-0405-9.
[109] J.R. Kastner, J. Miller, D.P. Geller, J. Locklin, L.H. Keith, T. Johnson, Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon, Catal. Today. 190 (2012) 122–132. https://doi.org/10.1016/j.cattod.2012.02.006.
[110] W.Y. Wong, S. Lim, Y.L. Pang, S.H. Shuit, W.H. Chen, K.T. Lee, Synthesis of renewable heterogeneous acid catalyst from oil palm empty fruit bunch for glycerol-free biodiesel production, Sci. Total Environ. 727 (2020) 138534. https://doi.org/10.1016/j.scitotenv.2020.138534.
[111] S. Lim, C.Y. Yap, Y.L. Pang, K.H. Wong, Biodiesel synthesis from oil palm empty fruit bunch biochar derived heterogeneous solid catalyst using 4-benzenediazonium sulfonate, J. Hazard. Mater. 390 (2020) 121532. https://doi.org/10.1016/j.jhazmat.2019.121532.
[112] Y.L. Pang, S. Lim, R.K.L. Lee, Enhancement of sonocatalytic degradation of organic dye by using titanium dioxide (TiO2)/activated carbon (AC) derived from oil palm empty fruit bunch, Environ. Sci. Pollut. Res. 27 (2020) 34638–34652. https://doi.
org/10.1007/s11356-019-05373-x.
[113] M.J. Hazlett, R.A. Arnold, V. Montes, Y. Xiao, J.M. Hill, Carbonaceous Catalysts from Biomass, 2019. https://doi.org/10.1007/978-981-13-3768-0_7.
[114] S. Jung, Y.K. Park, E.E. Kwon, Strategic use of biochar for CO2 capture and sequestration, J. CO2 Util. 32 (2019) 128–139. https://doi.org/10.1016/j.jcou.2019.04.012.
[115] P. Wu, S.T. Ata-Ul-Karim, B.P. Singh, H. Wang, T. Wu, C. Liu, G. Fang, D. Zhou, Y. Wang, W. Chen, A scientometric review of biochar research in the past 20 years (1998–2018), Biochar. 1 (2019) 23–43. https://doi.org/10.1007/s42773-019-00002-9.
[116] A. Hansson, S. Haikola, M. Fridahl, P. Yanda, E. Mabhuye, N. Pauline, Biochar as multi-purpose sustainable technology: experiences from projects in Tanzania, Springer Netherlands, 2020. https://doi.org/10.1007/s10668-020-00809-8.
[117] H. Liu, H. Li, A. Zhang, M.A. Rahaman, Z. Yang, Inhibited effect of biochar application on N2O emissions is amount and time-dependent by regulating denitrification in a wheat-maize rotation system in North China, Sci. Total Environ. 721 (2020). https://doi.org/10.1016/j.scitotenv.2020.137636.
[118] D.K. Gupta, C.K. Gupta, R. Dubey, R.K. Fagodiya, G. Sharma, K. A., M.B. Noor Mohamed, R. Dev, A.K. Shukla, Role of Biochar in Carbon Sequestration and Greenhouse Gas Mitigation, in: Biochar Appl. Agric. Environ. Manag., Springer International Publishing, Cham, 2020: pp. 141–165. https://doi.org/10.1007/978-3-030-40997-5_7.
[119] T.M. Abdel-Fattah, M.E. Mahmoud, S.B. Ahmed, M.D. Huff, J.W. Lee, S. Kumar, Biochar from woody biomass for removing metal contaminants and carbon sequestration, J. Ind. Eng. Chem. (2013). https://doi.org/10.1016/j.jiec.2014.06.030.
[120] S. Nanda, A.K. Dalai, F. Berruti, J.A. Kozinski, Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials, Waste and Biomass Valorization. 7 (2016) 201–235. https://doi.org/10.1007/s12649-015-9459-z.
[121] K.T. Klasson, Biochar characterization and a method for estimating biochar quality from proximate analysis results, Biomass and Bioenergy. 96 (2017) 50–58. https://doi.org/10.1016/j.biombioe.2016.10.011.
[122] D. Li, L. Zhao, X. Cao, Z. Xiao, H. Nan, H. Qiu, Nickel-catalyzed formation of mesoporous carbon structure promoted capacitive performance of exhausted biochar, Chem. Eng. J. 406 (2021) 126856. https://doi.org/10.1016/j.cej.2020.126856.
[123] N. Zhao, S. Wu, C. He, C. Shi, E. Liu, X. Du, J. Li, Hierarchical porous carbon with graphitic structure synthesized by a water soluble template method, Mater. Lett. 87 (2012) 77–79. https://doi.org/10.1016/j.matlet.2012.07.085.
[124] L. Wang, L. Chen, D.C.W. Tsang, B. Guo, J. Yang, Z. Shen, D. Hou, Y.S. Ok, C.S. Poon, Biochar as green additives in cement-based composites with carbon dioxide curing, J. Clean. Prod. 258 (2020) 120678. https://doi.org/10.1016/j.jclepro.2020.120678.
[125] S. Sri Shalini, K. Palanivelu, A. Ramachandran, V. Raghavan, Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review, Biomass Convers. Biorefinery. 280 (2020). https://doi.org/10.1007/s13399-020-00604-5.
[126] S. Gupta, H.W. Kua, H.J. Koh, Application of biochar from food and wood waste as green admixture for cement mortar, Sci. Total Environ. 619–620 (2018) 419–435.
https://doi.org/10.1016/j.scitotenv.2017.11.044.
[127] H. Thers, S.N. Djomo, L. Elsgaard, M.T. Knudsen, Biochar potentially mitigates greenhouse gas emissions from cultivation of oilseed rape for biodiesel, Sci. Total Environ. 671 (2019) 180–188. https://doi.org/10.1016/j.scitotenv.2019.03.257.
[128] Q.-W. Song, L.-N. He, Atom Economy, in: Encycl. Sustain. Sci. Technol., Springer New York, New York, NY, 2018: pp. 1–21. https://doi.org/10.1007/978-1-4939-2493-6_1001-1.
[129] J. Idris, Y. Shirai, Y. Anduo, A.A.M. Ali, M.R. Othman, I. Ibrahim, R. Husen, M.A. Hassan, Improved yield and higher heating value of biochar from oil palm biomass at low retention time under self-sustained carbonization, J. Clean. Prod. 104 (2015) 475–479. https://doi.org/10.1016/j.jclepro.2015.05.023.
[130] R.V. Quah, Y.H. Tan, N.M. Mubarak, J. Kansedo, M. Khalid, E.C. Abdullah, M.O. Abdullah, Magnetic biochar derived from waste palm kernel shell for biodiesel production via sulfonation, Waste Manag. 118 (2020) 626–636. https://doi.org/10.1016/j.wasman.2020.09.016.
[131] M.N. Uddin, K. Techato, J. Taweekun, M.M. Rahman, M.G. Rasul, T.M.I. Mahlia, S.M. Ashrafur, An overview of recent developments in biomass pyrolysis technologies, Energies. 11 (2018). https://doi.org/10.3390/en11113115.
[132] International Biochar Initiative, (n.d.). https://biochar-international.org/ (accessed July2, 2021).

Descargas

Publicado

2022-03-31

Cómo citar

Munar F., D. A., Ramírez C., N. E., & García Núñez, J. A. . (2022). Biocarbón como producto de la biomasa residual de palma de aceite en un concepto de economía circular. Boletines técnicos, (41), 1–80. Recuperado a partir de https://publicaciones.fedepalma.org/index.php/boletines/article/view/13709